Skip to main content
Log in

Accurate and efficient shape matching approach using vocabularies of multi-feature space representations

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Selection of compressed, robust and accurate features is the fundamental ingredient of effective content-based image recognition and retrieval using shape information of objects in the image. In this paper, we present a four-stage system for real-time object recognition and retrieval that employs multiple feature space representation using contour information. In the first stage, we pre-process the shapes to cater for the presence of distortions such as cracks that can significantly distort the contour information of the shape. We then generate multiple feature space representations of shapes to be used later in proposed combination for efficient and accurate retrieval of shapes using a hierarchical indexing structure. To enable real-time image-based shape analysis by enhancing the efficiency and reducing the storage requirement of proposed shape descriptors, we present a quantization approach to generate vocabulary of feature space representation of shapes. These features are then combined in an ensemble for accurate and efficient shape retrieval and recognition in the presence of large shape datasets. The proposed system is evaluated using publicly available shape datasets such as MPEG 7, Swedish leaf and KIMIA 99 datasets. Our approach achieves higher accuracies which are better than state-of-the-art approaches reported in literature whilst looking at a small subset of shapes in dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Available at: http://www.cs.ucr.edu/eamonn/shape/shape.html.

References

  1. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, p. 171--191. Academic Press, New York (1997)

    Google Scholar 

  2. Manay, S., Cremers, D., Hong, B.-W., Yezi, A.J., Soatto, S.: Integral invariants for shape matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)

    Article  Google Scholar 

  3. Boutin, M.: Numerically invariant signature curves. J. Comput. Vis. 40(3), 235–248 (2000)

    Article  MATH  Google Scholar 

  4. Bruckstein, A.M., Holt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. J. Comput. Vis. Graph. Image Process. 58(1), 49–65 (1993)

    Article  Google Scholar 

  5. Khalid, S.: Robust shape matching using global feature space representation of contours. In: International Conference on Networking and Communication, pp. 724–728. Maui, Hawaii, USA Feb. (2012)

  6. Khalid, S., Mukhtar, S.: An approach to improve efficiency and accuracy of sophisticated and intelligent shape matching techniques. In: IEEE 4th International Conference on Simulation, Modeling and Simulation, pp. 29–31. Bangkok, Thailand, January (2013)

  7. Mori, G., Belongie, S., Malik, J.: Efficient shape matching using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1832–1837 (2005)

    Article  MATH  Google Scholar 

  8. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 509–522 (2002)

    Article  Google Scholar 

  9. Belongie, S., Malik, J., Puzicha, J.: Matching shapes. In: Proceedings of Eighth IEEE International Conference on Computer Vision, vol. I, pp. 454461. Vancouver, Canada, July (2001)

  10. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  11. Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vis. Res. 38, 2365–2385 (1998)

    Article  Google Scholar 

  12. Petrakis, E.G.M., Diplaros, A., Milios, E.: Matching and retrieval of distorted and occluded shapes using dynamic programming. PAMI 24(11), 1501–1516 (2002)

    Article  Google Scholar 

  13. Daliri, M., Torre, V.: Robust symbolic representation for shape recognition and retrieval. Pattern Recognit. 41(5), 1799–1815 (2008)

    Article  MATH  Google Scholar 

  14. Attalla, E., Siy, P.: Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching. Pattern Recognit. 38(12), 2229–2241 (2005)

    Article  Google Scholar 

  15. Berretti, S., Bimbo, A.D., Pala, P.: Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Trans. Multimed. 2(4), 225–239 (2000)

    Article  Google Scholar 

  16. Dudek, G., Tsotsos, J.K.: Shape representation and recognition from multiscale curvature. J. Comput. Vis. Image Underst. 68(2), 170–189 (1997)

    Article  Google Scholar 

  17. Felzenszwalb, P.F., Schwartz, J.: Hierarchical Matching of Deformable Shapes. In: Proceedings of IEEE CS Conference Computer Vision and Pattern Recognition (2007)

  18. Fan, X., Qi, C., Liang, D., Huang, H.: Probabilistic contour extraction using hierarchical shape representation. Proc. IEEE Int. Conf. Comput. Vis. 302–308 (2005)

  19. McNeill, G., Vijayakumar, S.: Hierarchical Procrustes Matching for Shape Retrieval. In: Proceedings of IEEE CS Conference Computer Vision and Pattern Recognition (2006)

  20. Alajlan, N., Kamel, M., Freeman, G.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1003–1013 (2008)

    Article  Google Scholar 

  21. H.V. Nguyen, F. Porikli, Support Vector Shape: A Classifier-Based Shape Representation, IEEE Trans. Pattern Analysis and Machine Intelligence, pp. 970–982, 2013. doi:10.1109/TPAMI.2012.186

  22. Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planar shapes. ECCV (2010)

  23. Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. ECCV. 6313, 411–424 (2010)

    Google Scholar 

  24. Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. ECCV. 788–801 (2008)

  25. Kontschieder, P., Donoser, M., Bischof, H.: Beyond Pairwise Shape Similarity Analysis. In: Proceedings of Asian Conference on Computer Vision (ACCV), Xi’an, China, September (2009)

  26. Wang, B., Tu, Z.: Affinity learning via self-diffusion for image segmentation and clustering. CVPR (2012)

  27. Liu, H., Yang, X., Latecki, L.J., Yan, S.: Dense neighborhoods on affinity graph. Int. J. Comput. Vis. (2012)

  28. Wang, J., Li, Y., Bai, X., Zhang, Y., Wang, C., Tang, N.: Learning context-sensitive similarity by shortest path propagation. Pattern Recognit. 44(10—-11), 2367–2374 (2011)

    Article  Google Scholar 

  29. Keogh, E., Wei, L., Xi, X., Lee, S-H., Vlachos, M.: LB-Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures, VLDB (2006)

  30. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  31. Tan, K.L., Ooi, B.C., Thiang, L.F.: Indexing shapes in image databases using the centroid-radii model. Data Knowl. Eng. 32, 271–289 (2000)

    Article  MATH  Google Scholar 

  32. Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. Proc. ICCV. 2, 1458–1465 (2005)

    Google Scholar 

  33. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR (2007)

  34. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV (2003)

  35. Haris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the fourth Alvey vision conference, pp. 147–151. Manchester, UK (1988)

  36. Khalid, S.: Incremental indexing and retrieval mechanism for scalable and robust contour-based shape matching. Multimed. Syst. 18(4), 319–336 (2012)

    Article  Google Scholar 

  37. Laha, A., Pal, N.R., Chanda, B.: Design of vector quantizer for image compression using self-organizing feature map and surface fitting. IEEE Trans. Image Process. 13(10), 1291–1303 (2004)

    Article  Google Scholar 

  38. Latecki, L., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR (2000)

  39. Soderkvist, O.: Computer vision classification of leaves from swedish trees, Masters thesis, Linkoping University (2001)

  40. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 6(5), 550–571 (2004)

    Article  Google Scholar 

  41. Sebastian, T., Klein, P., Kimia, B.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 116–125 (2003)

    Article  Google Scholar 

  42. Xie, J., Heng, P., Shah, M.: Shape matching and modeling using skeletal context. Pattern Recognit. 41(5), 1756–1767 (2008)

    Article  MATH  Google Scholar 

  43. Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications and MPEG-7 Standardization. Kluwer Academic (2003)

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2061978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehzad Khalid.

Ethics declarations

Conflict of interest

The authors do not have a direct financial relation that might lead to a conflict of interest for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Sajjad, S., Jabbar, S. et al. Accurate and efficient shape matching approach using vocabularies of multi-feature space representations. J Real-Time Image Proc 13, 449–465 (2017). https://doi.org/10.1007/s11554-015-0545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0545-z

Keywords

Navigation