Skip to main content

Advertisement

Log in

Toward Predicting the Spatio-Temporal Dynamics of Alopecia Areata Lesions Using Partial Differential Equation Analysis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hair loss in the autoimmune disease, alopecia areata (AA), is characterized by the appearance of circularly spreading alopecic lesions in seemingly healthy skin. The distinct spatial patterns of AA lesions form because the immune system attacks hair follicle cells that are in the process of producing hair shaft, catapults the mini-organs that produce hair from a state of growth (anagen) into an apoptosis-driven regression state (catagen), and causes major hair follicle dystrophy along with rapid hair shaft shedding. In this paper, we develop a model of partial differential equations (PDEs) to describe the spatio-temporal dynamics of immune system components that clinical and experimental studies show are primarily involved in the disease development. Global linear stability analysis reveals there is a most unstable mode giving rise to a pattern. The most unstable mode indicates a spatial scale consistent with results of the humanized AA mouse model of Gilhar et al. (Autoimmun Rev 15(7):726–735, 2016) for experimentally induced AA lesions. Numerical simulations of the PDE system confirm our analytic findings and illustrate the formation of a pattern that is characteristic of the spatio-temporal AA dynamics. We apply marginal linear stability analysis to examine and predict the pattern propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alkhalifah A, Alsantali A, Wang E, McElwee KJ, Shapiro J (2010) Alopecia areata update: part I. Clinical picture, histopathology, and pathogenesis. J Am Acad Dermatol 62(2):177–188

    Article  Google Scholar 

  • Alli R, Nguyen P, Boyd K, Sundberg JP, Geiger TL (2012) A mouse model of clonal CD8\(+\) T lymphocyte-mediated alopecia areata progressing to alopecia universalis. J Immunol 188(1):477–486

    Article  Google Scholar 

  • Al-Nuaimi Y, Baier G, Watson RE, Chuong CM, Paus R (2010) The cycling hair follicle as an ideal systems biology research model. Exp Dermatol 19(8):707–713

    Article  Google Scholar 

  • Al-Nuaimi Y, Goodfellow M, Paus R, Baier G (2012) A prototypic mathematical model of the human hair cycle. J Theor Biol 310:143–159

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Nuaimi Y, Hardman JA, Bíró T, Haslam IS, Philpott MP, Tóth BI, Farjo N, Farjo B, Baier G, Watson REB, Grimaldi B, Kloepper JE, Paus R (2014) A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol 134(3):610–619

    Article  Google Scholar 

  • Bae H, Barlow AT, Young H, Valencia JC (2016) Volume 2: molecular immunology. Cytokines and their receptors. In: Ratcliffe MJH, Colonna M, Elliott T, Mantovani A, Martin A (eds) Interferon-\(\gamma \): an overview of its functions in health and disease, encyclopedia of immunobiology, 1st edn. Elsevier, Amsterdam, pp 494–500

  • Benechet AP, Menon M, Khanna KM (2014) Visualizing T cell migration in situ. Front Immunol. https://doi.org/10.3389/fimmu.2014.00363

    Article  Google Scholar 

  • Ben-Jacob E, Brand H, Dee G, Kramer L, Langer JS (1985) Pattern propagation in nonlinear dissipative systems. Phys D Nonlinear Phenom 14(3):348–364

    Article  MathSciNet  MATH  Google Scholar 

  • Bernstein RM, Rassman WR (1997) The aesthetics of follicular transplantation. Dermatol Surg 23(9):785–799

    Article  Google Scholar 

  • Bertolini M, Pretzlaff M, Sulk M, Bähr M, Gherardini J, Uchida Y, Reibelt M, Kinori M, Rossi A, Bíró T, Paus R (2016) Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol 175(3):531–541

    Article  Google Scholar 

  • Boniface K, Seneschal J (2019) Vitiligo as a skin memory disease: the need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells. Exp Dermatol 28(6):656–661

    Article  Google Scholar 

  • Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3(7):521–533

    Article  Google Scholar 

  • Cassell DK, Rose NR (2003) The encyclopedia of autoimmune diseases. Facts On File, Entries a-z, pp 3–9

  • Chuong CM, Dhouailly D, Gilmore S, Forest L, Shelley WB, Stenn KS, Maini P, Michon F, Parimoo S, Cadau S, Demongeot J, Zheng Y, Paus R, Happle R (2006) What is the biological basis of pattern formation of skin lesions? Exp Dermatol 15(7):547–564

    Article  Google Scholar 

  • Cogan NG, Donahue M, Whidden M (2012) Marginal stability and traveling fronts in two-phase mixtures. Phys Rev E 86(5):056204

    Article  Google Scholar 

  • Collins N, Jiang X, Zaid A, Macleod BL, Li J, Park CO, Haque A, Bedoui S, Heath WR, Mueller SN, Kupper TS, Gebhardt T, Carbone FR (2016) Skin CD4\(^{+}\) memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat Commun 7, Article number: 11514

  • Dai Z, Xing L, Cerise J, Wang EH, Jabbari A, de Jong A, Petukhova L, Christiano AM, Clynes R (2016) CXCR3 blockade inhibits T cell migration into the skin and prevents development of alopecia areata. J Immunol 197(4):1089–1099

    Article  Google Scholar 

  • Dee G, Langer JS (1983) Propagating pattern selection. Phys Rev Lett 50(6):383–386

    Article  Google Scholar 

  • Dobreva A, Paus R, Cogan NG (2015) Mathematical model for alopecia areata. J Theor Biol 380:332–345

    Article  MathSciNet  MATH  Google Scholar 

  • Dobreva A, Paus R, Cogan NG (2017) Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. Math Med Biol 35(3):387–407

    Article  MathSciNet  MATH  Google Scholar 

  • Fowell DJ (2016) Volume 3: activation of the immune system. T cell activation. In: Ratcliffe MJH, Defranco A, Miyasaka M, Mosmann T (eds) Modification of T cell functions at sites of infection and inflammation, encyclopedia of immunobiology, 1st edn. Elsevier, Amsterdam, pp 336–343

  • Gilhar A (2010) Collapse of immune privilege in alopecia areata: coincidental or substantial? J Invest Dermatol 130:2535–2537

    Article  Google Scholar 

  • Gilhar A, Ullmann Y, Berkutzki T, Assy B, Kalish RS (1998) Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. J Clin Invest 101(1):62–67

    Article  Google Scholar 

  • Gilhar A, Landau M, Assy B, Shalaginov R, Serafimovich S, Kalish RS (2002) Mediation of alopecia areata by cooperation between CD4\(^{+}\) and CD8\(^{+}\) T lymphocytes: transfer to human scalp explants on \(\text{ Prkdc }^{\mathit{scid}}\) mice. Arch Dermatol 138(7):916–922

    Article  Google Scholar 

  • Gilhar A, Etzioni A, Paus R (2012) Medical progress: alopecia areata. N Eng J Med 366(16):1515–1525

    Article  Google Scholar 

  • Gilhar A, Keren A, Paus R (2013) A new humanized mouse model for alopecia areata. J Invest Dermatol Symp Proc 16(1):S37–S38

    Article  Google Scholar 

  • Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R (2016) Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 15(7):726–735

    Article  Google Scholar 

  • Gilhar A, Keren A, Paus R (2019a) JAK inhibitors and alopecia areata. Lancet 393(10169):318–319

  • Gilhar A, Laufer-Britva R, Keren A, Paus R (2019b) Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol 144(6):1478–1489

    Article  Google Scholar 

  • Giordano CN, Sinha AA (2013) Cytokine pathways and interactions in alopecia areata. Eur J Dermatol 23(3):308–318

    Google Scholar 

  • Hamed FN, Åstrand A, Bertolini M, Rossi A, Maleki-Dizaji A, Messenger AG, McDonagh AJG, Tazi-Ahnini R (2019) Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCR\(\beta \)-chain, which highlights the immunopathological aspect of the disease. PLoS One 14(7):e0210308

  • Harris JE (2013) Vitiligo and alopecia areata: apples and oranges? Exp Dermatol 22(12):785–789

    Article  Google Scholar 

  • Ito T (2010) Hair follicle is a target of stress hormone and autoimmune reactions. J Dermatol Sci 60:67–73

    Article  Google Scholar 

  • Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R (2004) Collapse and restoration of MHC Class-I-dependent immune privilege. Am J Pathol 164(2):623–634

    Article  Google Scholar 

  • Ito N, Ito T, Kromminga A, Bettermann A, Takigawa M, Kees F, Straub RH, Paus R (2005) Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J 19(10):1332–1334

    Article  Google Scholar 

  • Ito T, Ito N, Saathoff M, Bettermann A, Takigawa M, Paus R (2005) Interferon-\(\gamma \) is a potent inducer of catagen-like changes in cultured human anagen hair follicles. Br J Dermatol 152(4):623–631

    Article  Google Scholar 

  • Ito T, Ito N, Saathoff M, Hashizume H, Fukamizu H, Nickoloff B, Takigawa M, Paus R (2008) Maintenance of hair follicle immune privilege is linked to prevention of NK cel lattack. J Invest Dermatol 128(5):1196–1206

    Article  Google Scholar 

  • Ito T, Hashizume H, Shimauchi T, Funakoshi A, Ito N, Fukamizu H, Takigawa M, Tokura Y (2013) CXCL10 produced from hair follicles induces Th1 and Tc1 cell infiltration in the acute phase of alopecia areata followed by sustained Tc1 accumulation in the chronic phase. J Dermatol Sci 69:140–147

    Article  Google Scholar 

  • Jensen O, Pannbacker VO, Mosekilde E, Dewel G, Borckmans P (1994) Localized structures and front propagation in the Lengyel–Epstein model. Phys Rev E 50(2):736–749

    Article  Google Scholar 

  • Jimbo H, Nagai H, Fujiwara S, Shimoura N, Nishigori C (2020) Fas-FasL interaction in cytotoxic T cell-mediated vitiligo: the role of lesional expression of tumor necrosis factor-\(\alpha \) and interferon-\(\gamma \) in Fas-mediated melanocyte apoptosis. Exp Dermatol 29(1):61–70

    Article  Google Scholar 

  • Jimenez F, Ruifernández JM (1999) Distribution of human hair in follicular units. A mathematical model for estimating the donor size in follicular unit transplantation. Dermatol Surg 25(4):294–298

    Article  Google Scholar 

  • Kang H, Wu WY, Yu M, Shapiro J, McElwee KJ (2019) Increased expression of TLR7 and TLR9 in alopecia areata. Exp Dermatol. https://doi.org/10.1111/exd.14043

    Article  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30:225–234

    Article  MATH  Google Scholar 

  • Kinori M, Bertolini M, Funk W, Samuelov L, Meyer KC, Emelianov VU, Hasse S, Paus R (2012) Calcitonin gene-related peptide (CGRP) may award relative protection from interferon-induced collapse of human hair follicle immune privilege. Exp Dermatol 21(3):223–226

    Article  Google Scholar 

  • Krummel MF, Bartumeus F, Gérard A (2016) T-cell migration, search strategies and mechanisms. Nat Rev Immunol 16(3):193–201

    Article  Google Scholar 

  • Li J, van Vliet C, Rufaut NW, Jones LN, Sinclair RD, Carbone FR (2016) Laser capture microdissection reveals transcriptional abnormalities in alopecia areata before, during, and after active hair loss. J Invest Dermatol 136(3):715–718

    Article  Google Scholar 

  • Luster AD, Ravetch JV (1987) Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 166(4):1084–1097

    Article  Google Scholar 

  • McElwee KJ, Gilhar A, Tobin DJ, Ramot Y, Sundberg JP, Nakamura M, Bertolini M, Inui S, Tokura Y, King LE Jr, Duque-Estrada B, Tosti A, Keren A, Itami S, Shoenfeld Y, Zlotogorski A, Paus R (2013) What causes alopecia areata? Exp Dermatol 22:609–626

    Article  Google Scholar 

  • Mohri H, Perelson AS, Tung K, Ribeiro RM, Ramratnam B, Markowitz M, Kost R, Hurley A, Weinberger L, Cesar D, Hellerstein MK, Ho DD (2001) Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med 194(9):1277–1287

    Article  Google Scholar 

  • Murray JD (2003a) 2. Spatial pattern formation with reaction diffusion systems. In: Antman SS, Marsden JE, Sirovich L, Wiggins S (eds) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, Berlin

  • Murray JD (2003b) 3. Animal coat patterns and other practical applications of reaction diffusion mechanisms. In: Antman SS, Marsden JE, Sirovich L, Wiggins S (eds) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, Berlin

  • Murray JD (2003c) 4. Pattern formation on growing domains: alligators and snakes. In: Antman SS, Marsden JE, Sirovich L, Wiggins S (eds) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, Berlin

  • Murray JD (1981) A pre-pattern formation mechanism for animal coat markings. J Theor Biol 88:161–199

    Article  MathSciNet  Google Scholar 

  • Myerscough MR, Murray JD (1992) Analysis of propagating pattern in a chemotaxis system. Bull Math Biol 54(1):77–94

    Article  MATH  Google Scholar 

  • Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341(7):491–497

    Article  Google Scholar 

  • Paus R, Slominski A, Czametzki BM (1993) Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med 66:541–554

    Google Scholar 

  • Paus R, Nickoloff BJ, Ito T (2005) A ‘hairy’ privilege. Trends Immunol 26(1):32–40

    Article  Google Scholar 

  • Paus R, Arck P, Tiedea S (2008) (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 288:38–51

    Article  Google Scholar 

  • Paus R, Bulfone-Paus S, Bertolini M (2018) Hair follicle immune privilege revisited: the key to alopecia areata management. J Invest Dermatol Symp Proc 19(1):S12–S17

    Article  Google Scholar 

  • Peters EMJ, Liotiri S, Bodó E, Hagen E, Bíró T, Arck PC, Paus R (2007) Probing the effects of stress mediators on the human hair follicle. Substance P holds central position. Am J Pathol 171(6):1872–1886

    Article  Google Scholar 

  • Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, Kim H, Singh P, Lee A, Chen W, Meyer K, Paus R, Jahoda C, Amos C, Gregersen P, Christiano A (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466:113–117

    Article  Google Scholar 

  • Picardo M, Taïeb A (2019) Focus theme issue: “vitiligo and other pigmentary disorders”. Exp Dermatol 28(6):639–641

  • Pigozzo AB, Macedo GC, dos Santos RW, Lobosco M (2011) Implementation of a computational model of the innate immune system. In: ICARIS proceedings. Artificial immune systems, pp 95–107

  • Plikus MV, Van Spyk EN, Pham K, Geyfman M, Kumar V, Takahashi JS, Andersen B (2015) The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity. J Biol Rhythms 30(3):163–82

    Article  Google Scholar 

  • Rork JF, Rashighi M, Harris JE (2016) Understanding autoimmunity of vitiligo and alopecia areata. Curr Opin Pediatr 28(4):463–469

    Article  Google Scholar 

  • Rose NR, Mackay I (eds) (2013) Autoimmune disease: the consequence of disturbed homeostasis. In: The autoimmune diseases, 5th edn. Academic Press, New York, pp 3–9

  • Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  Google Scholar 

  • Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142

    Article  Google Scholar 

  • Segel LA (1984) Modeling dynamic phenomena in molecular and cellular biology, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Skurkovich B, Skurkovich S (2003) Anti-interferon-gamma antibodies in the treatment of autoimmune diseases. Curr Opin Mol Ther 5(1):52–57

    Google Scholar 

  • Speiser JJ, Mondo D, Mehta V, Marcial SA, Kini A, Hutchens KA (2019) Regulatory T-cells in alopecia areata. J Cutan Pathol 46(9):653–658

  • Thelen M, Uguccioni M (2016) Volume 2: Molecular immunology. In: Ratcliffe MJH, Colonna M, Elliott T, Mantovani A, Martin A (eds) Cytokines and their receptors. Function of chemokines and their receptors in immunity, Encyclopedia of immunobiology, 1st edn. Elsevier, Amsterdam, pp 572–578

  • Ujiie H (2019) Regulatory T cells in autoimmune skin diseases. Exp Dermatol 28(6):642–646

    Article  Google Scholar 

  • Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK (2003) Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest 83(5):683–695

    Article  Google Scholar 

  • Widelitz RB, Baker RE, Plikus M, Lin CM, Maini PK, Paus R, Chuong CM (2006) Distinct mechanisms underlie pattern formation in the skin and skin appendages. Birth Defects Res C Embryo Today 78(3):280–291

    Article  Google Scholar 

  • Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, deJong A, Harel S, DeStefano GM, Rothman L, Singh P, Petukhova L, Mackay-Wiggan J, Christiano AM, Clynes R (2014) Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 20:1043–1049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanaska Dobreva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Atanaska Dobreva received support from the Research Training Group in Mathematical Biology, funded by a National Science Foundation Grant RTG/DMS—1246991. Ralf Paus was supported in part by departmental start-up funds. N. G. Cogan received support from NSF CBET 1510743.

Appendix

Appendix

See Table 2 and Figs. 12, 13, 14 and 15.

Table 2 Effects of parameter variations on the dispersion relation
Fig. 12
figure 12

t—time (in days), x—space (the interval \([0 \,\mathrm{cm},10 \,\mathrm{cm}]\)). \(p_{\mathrm{IFN}}=0.115\), \(s=0.1\). Snapshots of the patterns’ spread at 10, 15, 20, 25, 30, 40 and 50 days

Fig. 13
figure 13

t—time (in days), x—space (the interval \([0 \,\mathrm{cm},10 \,\mathrm{cm}]\)). \(p_{\mathrm{IFN}}=0.15\), \(s=0.1\). Snapshots of the patterns’ spread at 10, 15, 20, 25, 30, 40 and 50 days

Fig. 14
figure 14

t—time (in days), x—space (the interval \([0 \,\mathrm{cm},10 \,\mathrm{cm}]\)). \(p_{\mathrm{IFN}}=0.115\), \(s=0.01\). Snapshots of the patterns’ spread at 10, 15, 20, 25, 30, 40 and 50 days

Fig. 15
figure 15

t—time (in days), x—space (the interval \([0 \,\mathrm{cm},10 \,\mathrm{cm}]\)). \(t_{\mathrm{end}}=50\) days. a\(p_{\mathrm{IFN}}=0.115\), \(s=0.1\); b\(p_{\mathrm{IFN}}=0.15\), \(s=0.1\); c\(p_{\mathrm{IFN}}=0.115\), \(s=0.01\). In each case, the patterns underlying the behavior of T4 and T8 are similar to the pattern exhibited by IFN, i.e., places where the IFN concentration is elevated are also places where the levels of T4 and T8 are increased

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobreva, A., Paus, R. & Cogan, N.G. Toward Predicting the Spatio-Temporal Dynamics of Alopecia Areata Lesions Using Partial Differential Equation Analysis. Bull Math Biol 82, 34 (2020). https://doi.org/10.1007/s11538-020-00707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00707-0

Keywords

Navigation