Skip to main content

Advertisement

Log in

A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes’ Biased Distribution and Mosquito Repellent Use

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present an improved mathematical model of population dynamics of mosquito-borne disease transmission. Our model considers the effect of mosquito repellent use and the mosquito’s behavior or attraction to the infected human, which cause mosquitoes’ biased distribution around the human population. Our analysis of the model clearly shows the existence of thresholds for mosquito repellent efficacy and its utilization rate in the human population with respect to the elimination of mosquito-borne diseases. Further, the results imply that the suppression of mosquito-borne diseases becomes more difficult when the mosquitoes’ distribution is biased to a greater extent around the human population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldila D, Götz T, Soewono E (2012a) An optimal control problem arising from dengue disease transmission model. Math Biosci 242(1):9–16

    MathSciNet  MATH  Google Scholar 

  • Aldila D, Nuraini N, Soewono E (2012b) On the analysis of effectiveness in mass application of mosquito repellent for dengue prevention. AIP Conf Proc 1450:103–109

    Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans. Oxford University Press, Oxford

    Google Scholar 

  • Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, Revised edn. Oxford University Press, New York

    Google Scholar 

  • Alpern JD, Dunlop SJ, Dolan BJ, Stauffer WM, Boulware DR (2016) Personal protection measures against mosquitoes, ticks, and other arthropods. Med Clin North Am 100:303–316

    Google Scholar 

  • Bai J, Ju X, Li D, Wang X (2019) On the eventual stability of asymptotically autonomous systems with constraints. Discrete Contin Dyn Syst B 24(8):4457–4473

    MathSciNet  MATH  Google Scholar 

  • Borghans JAM, De Boer RJ, Segel L (1996) Extending the quasi-steady state approximation by changing variables. Bull Math Biol 58:43–63

    MATH  Google Scholar 

  • Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67:1107–1133

    MathSciNet  MATH  Google Scholar 

  • Brauer F (2017) Mathematical epidemiology: past, present, and future. Infect Dis Model 2:113–127

    Google Scholar 

  • Brauer F, Castillo-Chavez C, Mubayi A, Towers S (2016) Some models for epidemics of vector-transmitted diseases. Infect Dis Model 1:79–87

    Google Scholar 

  • Buonomo B, Vargas-De-León C (2014) Effects of mosquitoes host choice on optimal intervention strategies for malaria control. Acta Appl Math 132(1):127–138

    MathSciNet  MATH  Google Scholar 

  • Bustamam A, Aldila D, Yuwanda A (2018) Understanding dengue control for short- and long-term intervention with a mathematical model approach. J Appl Math 9674138(1–9674138):13

    MathSciNet  Google Scholar 

  • Calvo EP, Sanchez-Quete F, Duran S, Sandoval I, Casrellanos JE (2016) Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. Acta Trop 163:32–37

    Google Scholar 

  • Castillo-Chavez C, Thieme H (1995) Asymptotically autonomous epidemic models. In: Arino O, Axelrod DE, Kimmel M, Langlais M (eds) Mathematical population dynamics: analysis of heterogeneity: theory of epidemics, vol 1. Wuerz Publishing Ltd., Winnipeg, pp 33–50

    Google Scholar 

  • Center for Disease Control and Prevention (CDC) (2015) Anopheles mosquitoes. https://www.cdc.gov/malaria/about/biology/mosquitoes/. Accessed 15 Nov 2017

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272–1296

    MathSciNet  MATH  Google Scholar 

  • Costantini C, Gibson G, Sagnon N, Torre AD, Brady J, Coluzzi M (1996) Mosquito responses to carbon dioxide in a West African Sudan savanna. Med Vet Entomol 10:220–227

    Google Scholar 

  • Cruz-Pacheco G, Esteva L, Montano-Hirose JA, Vargas C (2005) Modelling the dynamics of West Nile virus. Bull Math Biol 67:1157–1172

    MathSciNet  MATH  Google Scholar 

  • Cushing JM, Diekmann O (2016) The many guises of \(R_0\) (a didactic note). J Theor Biol 404:295–302

    MATH  Google Scholar 

  • De Boer RJ, Perelson AS (1995) Towards a general function describing T cell proliferation. J Theor Biol 175:567–576

    Google Scholar 

  • Deletre E, Schatz B, Bourguet D, Chandre F, Williams L, Ratnadass A, Martin T (2016) Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26:127–142

    Google Scholar 

  • Diaz JH (2016) Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness Environ Med 27:153–163

    Google Scholar 

  • Diekmann O, Heesterbeek JAP, Britton T (2013) Mathematical tools for understanding infectious disease dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Dye C (1984) Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J Anim Ecol 53:247–268

    Google Scholar 

  • European Centre for Disease Prevention and Control (ECDC) An agency of the European Union (2018) Vector-borne diseases. https://ecdc.europa.eu/en/climate-change/climate-change-europe/vector-borne-diseases. Accessed 22 Oct 2018

  • Ferguson N, Anderson R, Gupta S (1999) The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc Natl Acad Sci USA 96(2):790–794

    Google Scholar 

  • Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17–21

    Google Scholar 

  • Heesterbeek JAP, Roberts MG (2007) The type-reproduction number \(T\) in models for infectious disease control. Math Biosci 206:3–10

    MathSciNet  MATH  Google Scholar 

  • Huisman G, De Boer RJ (1997) A formal derivation of the “Beddington” functional response. J Theor Biol 185:389–400

    Google Scholar 

  • Kim S, Masud MA, Cho G, Jung IH (2017) Analysis of a vector-bias effect in the spread of malaria between two different incidence areas. J Theor Biol 419:66–76

    MathSciNet  MATH  Google Scholar 

  • Kooi BW, Aguiar M, Stollenwerk N (2013) Bifurcation analysis of a family of multi-strain epidemiology models. J Comput Appl Math 252:148–158

    MathSciNet  MATH  Google Scholar 

  • Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3(9):1590–1593 (e298)

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. Regional conference series in applied mathematics. SIAM, Philadelphia

    Google Scholar 

  • Legros M, Lloyd AL, Huang Y, Gould F (2009) Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. J Med Entomol 46(3):409–419

    Google Scholar 

  • Lewis MA, Shuai Z, van den Driessche P (2019) A general theory for target reproduction numbers with applications to ecology and epidemiology. J Math Biol 78:2317–2339

    MathSciNet  MATH  Google Scholar 

  • Li J, Teng Z, Zhang L (2018) Stability and bifurcation in a vector-bias model of malaria transmission with delay. Math Comput Simul 152:15–34

    MathSciNet  Google Scholar 

  • Lord C (1998) Density dependence in larval Aedes albopictus (Diptera: Culicidae). J Med Entomol 35(5):825–829

    Google Scholar 

  • Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria—a review. Malar J 10:202

    Google Scholar 

  • Mukabana WR, Takken W, Killeen GI, Knols BGJ (2004) Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malar J 3(1):1

    Google Scholar 

  • Ngwa GA, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32:747–763

    MathSciNet  MATH  Google Scholar 

  • Pedersen MG, Bersani AM, Bersani E (2007) The total quasi-steady-state approximation for fully competitive enzyme reactions. Bull Math Biol 69:433–457

    MATH  Google Scholar 

  • Phasomkusolsil S, Tawong J, Monkanna N, Pantuwatana K, Damdangdee N, Khongtak W, Kertmanee Y, Evans BP, Schuster AL (2013) Maintenance of mosquito vectors: effects of blood source on feeding, survival, fecundity, and egg hatching rates. J Vector Ecol 38(1):38–45

    Google Scholar 

  • Roberts MG, Heesterbeek JAP (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc Lond B 270:1359–1364

    Google Scholar 

  • Rock K, Brand S, Moir J, Keeling MJ (2014) Dynamics of infectious diseases. Rep Prog Phys 77:026602

    MathSciNet  Google Scholar 

  • Schneider KR, Wilhelm T (2000) Model reduction by extended quasi-steady-state approximation. J Math Biol 40:443–450

    MathSciNet  MATH  Google Scholar 

  • Schnell S, Chappell MJ, Evans ND, Roussel MR (2006) The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study. C R Biol 329(1):51–61

    Google Scholar 

  • Segel LA, Slemrod M (1989) The quasi steady-state assumption: a case study in perturbation. SIAM Rev 31:446–477

    MathSciNet  MATH  Google Scholar 

  • Seno H (2016) Mathematical modelling of metapopulation dynamics: revisiting its meaning. Math Model Nat Phenom 11(4):34–46

    MathSciNet  MATH  Google Scholar 

  • Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5:e42

    Google Scholar 

  • Takken W, Verhulst NO (2013) Host preferences of blood-feeding mosquitoes. Annu Rev Entomol 58(1):433–453

    Google Scholar 

  • Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3(12):e201 PMID: 18069894

    Google Scholar 

  • Tzafriri AR, Edelman ER (2004) The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J Theor Biol 226:303–313

    MathSciNet  Google Scholar 

  • van den Driessche P (2017) Reproduction numbers of infectious disease models. Infect Dis Model 2:288–303

    Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    MathSciNet  MATH  Google Scholar 

  • van den Driessche P, Watmough J (2008) Further notes on the basic reproduction number. In: Brauer F, van den Driessche P, Wu J (eds) Mathematical epidemiology lecture notes in mathematics, vol 1945. Springer, Berlin, pp 159–178

    MATH  Google Scholar 

  • Wiratsudakul A, Suparit P, Modchang C (2018) Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches. Peer J 6:e4526. https://doi.org/10.7717/peerj.4526

    Article  Google Scholar 

  • Wonham MJ, Lewis MA, Rencławowicz J, van den Driessche P (2006) Transmission assumptions generate conflicting predictions in host-vector disease models: a case study in West Nile virus. Ecol Lett 9:706–725

    Google Scholar 

  • World Health Organization (WHO) (2017) Vector-borne diseases. http://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 22 Oct 2018

  • Xu Z, Zhang Y (2015) Traveling wave phenomena of a diffusive and vector-bias malaria model. Commun Pure Appl Anal 14(3):923–940

    MathSciNet  MATH  Google Scholar 

  • Xu Z, Zhao X-Q (2012) A vector-bias malaria model with incubation period and diffusion. Discrete Contin Dyn Syst B 17(7):2615–2634

    MathSciNet  MATH  Google Scholar 

  • Yakob L, Clements ACA (2013) A mathematical model of Chikungunya dynamics and control: the major epidemic on Réunion Island. PLoS ONE 8(3):e57448

    Google Scholar 

  • Yang H, Yang H, Li Z, Liu L, Wang W, He T, Fan F, Sun Y, Liu J, Li Y, Zeng X (2018) Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice. Vaccine 36(18):2450–2455

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank to the chief editor and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipo Aldila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author DA was supported by Universitas Indonesia with QQ Research Grant scheme, 2019 (Grant No. NKB-0268/UN2.R3.1/HKP.05.00/2019). The author HS was supported in part by JSPS KAKENHI (Grant No. 18K03407)

Appendices

Derivation of the Basic Reproduction Number \({\mathscr {R}}_0\)

At first we rearrange the system (30) as follows in the order according to the relation to the disease transmission:

$$\begin{aligned} \begin{array}{cl} \dfrac{\mathrm{d}f_{\mathrm I}}{\mathrm{d}t} &{}= (1-\xi \omega )\sigma _h \dfrac{f_{\mathrm V}f_{\mathrm S} }{1+\alpha f_{\mathrm I}}\, \eta _\omega - (\rho + \mu _h) f_{\mathrm I}\\ \dfrac{\mathrm{d}f_{\mathrm V}}{\mathrm{d}t} &{}= (1-\xi \omega )\sigma _m\dfrac{(1+\alpha ) f_{\mathrm I} (1-f_{\mathrm V})}{1+\alpha f_{\mathrm I}} - \mu _m f_{\mathrm V}\\ \dfrac{\mathrm{d}f_{\mathrm S}}{\mathrm{d}t} &{}= \mu _h - (1-\xi \omega )\sigma _h\dfrac{f_{\mathrm V} f_{\mathrm S}}{1+\alpha f_{\mathrm I}}\, \eta _\omega - \mu _h f_{\mathrm S} + \nu (1-f_{\mathrm S}-f_{\mathrm I}). \end{array} \end{aligned}$$
(45)

Next, we decompose the dynamical terms into two classes in which one shows the new infection process, and the other does show the other processes of the population dynamics:

$$\begin{aligned} \dfrac{\mathrm{d}\varvec{\varphi }}{\mathrm{d}t}={\mathscr {F}} (f_{\mathrm I}, f_{\mathrm V}, f_{\mathrm S})-{\mathscr {V}}(f_{\mathrm I}, f_{\mathrm V}, f_{\mathrm S}), \end{aligned}$$
(46)

where \( \varvec{\varphi }:= {}^{{\mathsf {T}}} \big [ f_{\mathrm I}\ f_{\mathrm V} \ f_{\mathrm S} \big ] \);

$$\begin{aligned} {\mathscr {F}}(f_{\mathrm I}, f_{\mathrm V}, f_{\mathrm S})&:= \begin{bmatrix} (1-\xi \omega )\sigma _h \frac{f_{\mathrm V}f_{\mathrm S}}{1+\alpha f_{\mathrm I}}\,\eta _\omega \\ 0\\ 0 \end{bmatrix};\\ -{\mathscr {V}}(f_{\mathrm I}, f_{\mathrm V}, f_{\mathrm S})&:=\begin{bmatrix} - (\rho + \mu _h) f_{\mathrm I}\\ (1-\xi \omega )\sigma _m\frac{(1+\alpha ) f_{\mathrm I} (1-f_{\mathrm V})}{1+\alpha f_{\mathrm I}} - \mu _m f_{\mathrm V}\\ \mu _h - (1-\xi \omega )\sigma _h \frac{f_{\mathrm V}f_{\mathrm S} }{1+\alpha f_{\mathrm I}}\,\eta _\omega - \mu _h f_{\mathrm S} + \nu (1-f_{\mathrm S}-f_{\mathrm I}) \end{bmatrix}. \end{aligned}$$

The vector \({\mathscr {F}}\) is for the terms of new infection process, while \(-{\mathscr {V}}\) is for the other. The Jacobian matrices of \({\mathscr {F}}\) and \({\mathscr {V}}\) about the disease-free equilibrium \(\varvec{\varphi }_0: = {}^{{\mathsf {T}}}\big [0\ 0\ 1\big ]\) are given by

$$\begin{aligned} D{\mathscr {F}}(\varvec{\varphi }_0)&= \begin{bmatrix} 0&\quad (1-\xi \omega )\sigma _h\eta _\omega&\quad 0\\ 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0 \end{bmatrix};\\ D{\mathscr {V}}(\varvec{\varphi }_0)&= \begin{bmatrix} \rho + \mu _h&\quad 0&\quad 0\\ - (1-\xi \omega )\sigma _m(1+\alpha )&\quad \mu _m&\quad 0\\ \nu&\quad (1-\xi \omega )\sigma _h\eta _\omega&\quad \mu _h+\nu \end{bmatrix}. \end{aligned}$$

Then, with the \(2\times 2\) matrices

$$\begin{aligned} {\mathcal {F}}:= \begin{bmatrix} 0&\quad (1-\xi \omega )\sigma _h\eta _\omega \\ 0&\quad 0 \end{bmatrix} \quad \text{ and }\quad {\mathcal {V}}:= \begin{bmatrix} \rho + \mu _h&\quad 0\\ -(1-\xi \omega )\sigma _m (1+\alpha )&\quad \mu _m \end{bmatrix}, \end{aligned}$$

the next-generation matrix \({\mathcal {K}}\) is given by \({\mathcal {F}}{\mathcal {V}}^{-1}\), that is,

$$\begin{aligned} {\mathcal {K}}={\mathcal {F}}{\mathcal {V}}^{-1} = \begin{bmatrix} \dfrac{ (1-\xi \omega )^2\sigma _m\sigma _h\eta _\omega (1+\alpha )}{\mu _m (\mu _h +\rho )}&\quad \dfrac{(1-\xi \omega )\sigma _h \eta _\omega }{\mu _m}\\ 0&\quad 0 \end{bmatrix}. \end{aligned}$$
(47)

The theory by van den Driessche and Watmough (2002), van den Driessche and Watmough (2008) says that the spectrum radius, that is, the maximum absolute value of the eigenvalue of \({\mathcal {K}}\) gives the basic reproduction number \({\mathscr {R}}_0\). Therefore, from (47), we can derive the basic reproduction number (31).

Local Stability of the Endemic Equilibrium \(E_+\)

In this appendix, we consider the local stability of the endemic equilibrium \(E_+\), \( \left( f_{\mathrm S},f_{\mathrm I},f_{\mathrm V}\right) = \left( f_{\mathrm S}^*, f_{\mathrm I}^*, f_{\mathrm V}^*\right) \) uniquely determined by (34)–(37) when it exists, that is, when \({\mathscr {R}}_0 > 1\) as shown in Lemma 2. Setting \( \left( f_{\mathrm S},f_{\mathrm I},f_{\mathrm V}\right) = \left( f_{\mathrm S}^*+x, f_{\mathrm I}^*+y, f_{\mathrm V}^*+z\right) \), we can get the following system of linear ordinary differential equations in terms of the perturbation \({}^{{\mathsf {T}}}\big [x\ y\ z\big ]\) around the endemic equilibrium \(E_+\) for (30):

$$\begin{aligned} \dfrac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \, x\, \\ y\\ z \end{bmatrix} =\left\{ \begin{array}{lll} -(\mu _h+\rho )\,\frac{f_{\mathrm I}^*}{f_{\mathrm S}^*}-(\mu _h+\nu ) &{} \quad (\mu _h +\rho )\,\frac{\alpha f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*}-\nu &{}\quad -(\mu _h +\rho )\,\frac{f_{\mathrm I}^*}{f_{\mathrm V}^*} \\ (\mu _h+\rho )\,\frac{f_{\mathrm I}^*}{f_{\mathrm S}^*} &{}\quad -(\mu _h +\rho )\,\frac{1+2\alpha f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*} &{}\quad (\mu _h +\rho )\,\frac{f_{\mathrm I}^*}{f_{\mathrm V}^*} \\ 0 &{}\quad \mu _m\,\frac{f_{\mathrm V}^*/f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*} &{}\quad -\frac{\mu _m}{1-f_{\mathrm V}^*} \end{array}\right\} \begin{bmatrix} \, x\, \\ y\\ z \end{bmatrix}, \end{aligned}$$
(48)

where we used the relations (34) about \(E_+\).

Next, let us consider the following function \({\mathscr {L}} = {\mathscr {L}}(x, y, z)\) constructed by the solution \({}^{{\mathsf {T}}}\big [x\ y\ z\big ]\) of the ordinary differential equations given by (48):

$$\begin{aligned} {\mathscr {L}}(x, y, z) := \dfrac{\, 1\, }{2}\, (x+y)^2 + \dfrac{\rho +2 (\mu _h +\nu )}{2(\mu _h +\rho )}\,\dfrac{f_{\mathrm S}^*}{f_{\mathrm I}^*}\, y^2 + \dfrac{\, Q\, }{2}\, z^2, \end{aligned}$$
(49)

where we will determine a positive constant Q appropriately in the following arguments. With a positive constant Q, the function \({\mathscr {L}}\) takes only nonnegative value, and becomes zero when and only when \(x = y = z = 0\), which corresponds to the endemic state \(E_+\).

Time derivative of \({\mathscr {L}}\) along the solution \({}^{{\mathsf {T}}}\big [x\ y\ z\big ]\) of (48) gives the following equation:

$$\begin{aligned} \left. \dfrac{\mathrm{d}{\mathscr {L}}}{\mathrm{d}t}\right| _{{(48)}}&= -(\mu _h +\nu )x^2 -(A_0y^2-A_1yz+A_2z^2) \nonumber \\&= -(\mu _h +\nu )x^2 -A_0\big (y-\dfrac{A_1}{2A_0}z\big )^2 + \dfrac{A_1^2-4A_0A_2}{4A_0}\, z^2 \end{aligned}$$
(50)

with positive constants given by

$$\begin{aligned} A_0&= \rho +\mu _h +\nu +\big \{ \rho + 2(\mu _h +\nu )\big \}\,\dfrac{f_{\mathrm S}^*/f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*};\\ A_1&= \big \{ \rho + 2(\mu _h +\nu )\big \}\,\dfrac{f_{\mathrm S}^*}{f_{\mathrm V}^*} + \mu _m\,\dfrac{f_{\mathrm V}^*/f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*}\, Q;\\ A_2&= \dfrac{\mu _m}{1-f_{\mathrm V}^*}\, Q. \end{aligned}$$

Hence, if we can choose a positive value of Q such that \( A_1^2 - 4A_0A_2 < 0 \), then we have the time derivative (50) which is always non-positive for any \({}^{{\mathsf {T}}}\big [x\ y\ z\big ]\) and becomes zero for \({}^{{\mathsf {T}}}\big [0\ 0\ 0\big ]\). The formula \( A_1^2 - 4A_0A_2 \) can be expressed as the quadratic function of Q, \( G(Q): = B_2Q^2-2B_1Q+B_0 \) with positive constants

$$\begin{aligned} B_2&= \mu _m^2 \left( \dfrac{f_{\mathrm V}^*/f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*} \right) ^2;\\ B_1&= \mu _m\big \{\rho + 2(\mu _h+\nu )\big \}\, \dfrac{f_{\mathrm S}^*/f_{\mathrm I}^*}{1+\alpha f_{\mathrm I}^*}\, \dfrac{1+f_{\mathrm V}^*}{1-f_{\mathrm V}^*} + \dfrac{2\mu _m (\rho +\mu _h+\nu )}{1-f_{\mathrm V}^*};\\ B_0&= \big \{ \rho + 2(\mu _h +\nu )\big \}^2\left( \dfrac{f_{\mathrm S}^*}{f_{\mathrm V}^*}\right) ^2. \end{aligned}$$

Since \(B_1>0\) and \( B_1^2 -B_0B_2 > 0 \), we find that the equation \(G(Q) < 0\) for a positive finite range of Q. Therefore, if we choose a value of Q from the positive range, then the time derivative (50) is always non-positive for any \({}^{{\mathsf {T}}}\big [x\ y\ z\big ]\). Since the largest invariant set where the time derivative (50) becomes zero is the singleton consisting of only \({}^{{\mathsf {T}}}\big [0\ 0\ 0\big ]\), the function \({\mathscr {L}}\) becomes a Lyapunov function for the equilibrium \({}^{{\mathsf {T}}}\big [0\ 0\ 0\big ]\) of the dynamical system (48). Thus, by LaSalle’s invariance principle (LaSalle 1976), the equilibrium \({}^{{\mathsf {T}}}\big [0\ 0\ 0\big ]\) is asymptotically stable with respect to the dynamical system (48). Consequently, the endemic equilibrium \(E_+\) is locally asymptotically stable whenever it exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldila, D., Seno, H. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes’ Biased Distribution and Mosquito Repellent Use. Bull Math Biol 81, 4977–5008 (2019). https://doi.org/10.1007/s11538-019-00666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00666-1

Keywords

Navigation