Skip to main content

Advertisement

Log in

Modeling the Potential Role of Engineered Symbiotic Bacteria in Malaria Control

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent experimental study suggests that the engineered symbiotic bacteria Serratia AS1 may provide a novel, effective and sustainable biocontrol of malaria. These recombinant bacteria have been shown to be able to rapidly disseminate throughout mosquito populations and to efficiently inhibit development of malaria parasites in mosquitoes in controlled laboratory experiments. In this paper, we develop a climate-based malaria model which involves both vertical and horizontal transmissions of the engineered Serratia AS1 bacteria in mosquito population. We show that the dynamics of the model system is totally determined by the vector reproduction ratio \(R_\mathrm{v}\), and the basic reproduction ratio \(R_0\). If \(R_\mathrm{v}\le 1\), then the mosquito-free state is globally attractive. If \(R_\mathrm{v}>1\) and \(R_0\le 1\), then the disease-free periodic solution is globally attractive. If \(R_\mathrm{v}>1\) and \(R_0>1\), then the positive periodic solution is globally attractive. Numerically, we verify the obtained analytic result and evaluate the effects of releasing the engineered Serratia AS1 bacteria in field by conducting a case study for Douala, Cameroon. We find that ideally, by using Serratia AS1 alone, it takes at least 25 years to eliminate malaria from Douala. This implies that continued long-term investment is needed in the fight against malaria and confirms the necessity of integrating multiple control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai S, Li J, Lu J (2012) Mosquito-stage-structured malaria models and their global dynamics. SIAM J Appl Math 72(4):1213–1237

    Article  MathSciNet  MATH  Google Scholar 

  • Arino J, Ducrot A, Zongo P (2012) A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J Math Biol 64:423–448

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ait Dads EH (2012) On the biological interpretation of a definition for the parameter \(R_0\) in periodic population models. J Math Biol 65:601–621

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53:421–436

    Article  MathSciNet  MATH  Google Scholar 

  • Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON (2017) The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. R Soc Open Sci 4:160969

    Article  Google Scholar 

  • Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalryple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CLJ, Smith DL, Hay SI, Cibulskis RE, Gething PW (2006) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 53:421–436

    Google Scholar 

  • Bliman P-A, Soledad Aronna M, Coelho FC, da Silva MAHB (2018) Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. J Math Biol 76(5):1269–1300

    Article  MathSciNet  MATH  Google Scholar 

  • Centers for Disease Control and Prevention. https://www.cdc.gov/malaria/about/biology/index.html

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296

    Article  MathSciNet  MATH  Google Scholar 

  • Craig M, Snow R, le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15(3):105–111

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in the models for infectious disease in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Heffernan JM, Lou Y, Steben M, Wu J (2014) Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete Contin Dyn Syst Ser B 19(2):447–466

    Article  MathSciNet  MATH  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  Google Scholar 

  • Hirsch MW, Smith HL, Zhao X-Q (2001) Chain transitivity, attractivity, and strong repellors for semidynamical systems. J Dyn Differ Equ 13:107–131

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba H (2012) On a new perspective of the basic reproduction number in heterogeneous environments. J Math Biol 22:113–128

    MathSciNet  MATH  Google Scholar 

  • Koenraadt CJM, Takken W (2018) Integrated approach to malaria control. Science 359(6375):528–529

    Google Scholar 

  • Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA (2018) Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Microb Ecol. https://doi.org/10.1007/s00248-018-1289-7

    Google Scholar 

  • Liang X, Zhang L, Zhao X-Q (2007) Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dyn Differ Equ. https://doi.org/10.1007/s10884-017-9601-7

    Google Scholar 

  • Lou Y, Zhao X-Q (2011) Modelling malaria control by introduction of larvivorous fish. Bull Math Biol 73:2384–2407

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London

    Google Scholar 

  • Martens P, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995) Potential impact of global climate change on malaria risk. Environ Health Perspect 103(5):458–464

    Article  Google Scholar 

  • Ndo C, Menze-Djantio B, Antonio-Nkondjio C (2011) Awareness, attitudes and prevention of malaria in the cities of Douala and Yaoundé (Cameroon). Parasites Vectors. https://doi.org/10.1186/1756-3305-4-181

    Google Scholar 

  • Ngarakana-Gwasira ET, Bhunu CP, Mashonjowa E (2014) Assessing the impact of temperature on malaria transmission dynamics. Afr Mat 25:1095–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Ngonghala CN, Mohammed-Awel J, Zhao R, Prosper O (2016) Interplay between insecticide-treated bed-nets and mosquito demography: implications for malaria control. J Theor Biol 397:179–192

    Article  MathSciNet  MATH  Google Scholar 

  • Paaijmans KP, Cator LJ, Thomas MB (2009) Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity. PLoS ONE 8(1):e55777

    Article  Google Scholar 

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. PNAS 107(34):15135–15139

    Article  Google Scholar 

  • Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  Google Scholar 

  • Ross R (1911) The prevention of malaria, 2nd edn. Murray, London

    Google Scholar 

  • Ruang-Areerate T, Kittayapong P (2006) Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci 103(34):12534–12539

    Article  Google Scholar 

  • Rubel F, Brugger K, Hantel M, Chvala-Mannsberger S, Bakonyi T, Weissenbo H, Nowotny N (2008) Explaining Usutu virus dynamics in Austria: model development and calibration. Prev Vet Med 85:166–186

    Article  Google Scholar 

  • Shapiro LLM, Whitehead SA, Thomas MB (2017) Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol 15(10):e2003489

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, mathematical surveys and monographs 41. American Mathematical Society, Providence

    Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math 70:188–211

    Article  MathSciNet  MATH  Google Scholar 

  • Trape JF (2001) The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 64(1 Suppl):12–17

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Walter W (1997) On strongly monotone flows. Annales Polonici Mathematici LXVI:269–274

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Zhao X-Q (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20:699–717

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhao X-Q (2017) A malaria transmission model with temperature-dependent incubation period. Bull Math Biol 79:1155–1182

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X, Zhao X-Q (2018) A climate-based malaria model with the use of bed nets. J Math Biol 77:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci 109(31):12734–12739

    Article  Google Scholar 

  • Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357:1399–1402

    Article  Google Scholar 

  • World Health Organization (2018) Malaria vaccine: WHO position paper, January 2016-recommendations. Vaccine 36:3576–3577

    Article  Google Scholar 

  • Xiao Y, Zou X (2013a) Can multiple malaria species co-persist? SIAM J Appl Math 73(1):351–373

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao Y, Zou X (2013b) On latencies in malaria infection and their impact on the disease dynamics. Math Biosci Eng 10:463–481

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao Y, Zou X (2014) Transmission dynamics for vector-borne diseases in a patchy environment. J Math Biol 69:113–146

    Article  MathSciNet  MATH  Google Scholar 

  • Yakob L, Yan G (2009) Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS ONE 4(9):e6921. https://doi.org/10.1371/journal.pone.0006921

    Article  Google Scholar 

  • Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York, pp 46–49

    Book  Google Scholar 

  • Zhao X-Q (2017) Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ 29:67–82

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very thankful to two anonymous referees for their insightful comments and helpful suggestions that greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiunan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zou, X. Modeling the Potential Role of Engineered Symbiotic Bacteria in Malaria Control. Bull Math Biol 81, 2569–2595 (2019). https://doi.org/10.1007/s11538-019-00619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00619-8

Keywords

Navigation