Skip to main content

Advertisement

Log in

Tropical Principal Component Analysis and Its Application to Phylogenetics

  • Special Issue: Algebraic Methods in Phylogenetics
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Principal component analysis is a widely used method for the dimensionality reduction of a given data set in a high-dimensional Euclidean space. Here we define and analyze two analogues of principal component analysis in the setting of tropical geometry. In one approach, we study the Stiefel tropical linear space of fixed dimension closest to the data points in the tropical projective torus; in the other approach, we consider the tropical polytope with a fixed number of vertices closest to the data points. We then give approximative algorithms for both approaches and apply them to phylogenetics, testing the methods on simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Our software for all computations can be downloaded at http://polytopes.net/computations/tropicalPCA/.

  2. A more detailed tutorial for how to use Mesquite to generate data can be accessed at https://www.youtube.com/watch?v=94tXmA4ods4&t=238s. We followed the same simulation steps and parameter settings as in this video.

  3. In keeping with the format of Mesquite Maddison and Maddison (2017), leaves of the species tree are rendered as capital letters. Tree topologies of all projected points can be found in the supplement at http://polytopes.net/computations/tropicalPCA/.

References

  • Akian M, Gaubert S, Viorel N, Singer I (2011) Best approximation in max-plus semimodules. Linear Algebra Appl 435:3261–3296

    Article  MathSciNet  MATH  Google Scholar 

  • Billera L, Holmes S, Vogtman K (2001) Geometry of the space of phylogenetic trees. Adv Appl Math 27:733–767

    Article  MathSciNet  MATH  Google Scholar 

  • Butkovic P (2010) Max-linear systems: theory and algorithms. Springer, London Springer monographs in mathematics

    Book  MATH  Google Scholar 

  • Burkard R, Dell’Amico M, Martello S (2009) Assignment problems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Cohen G, Gaubert S, Quadrat J (2004) Duality and separation theorems in idempotent semimodules. Linear Algebra Appl 379:395–422

    Article  MathSciNet  MATH  Google Scholar 

  • Depersin J, Gaubert S, Joswig M (2017) A tropical isoperimetric inequality. Sémin Lothar Combin 78B:12

    MathSciNet  MATH  Google Scholar 

  • Develin M, Sturmfels B (2004) Tropical convexity. Doc Math 9:1–27

    MathSciNet  MATH  Google Scholar 

  • Feragen A, Owen M, Petersen J, Wille MMW, Thomsen LH, Dirksen A, de Bruijne M (2012) Tree-space statistics and approximations for large-scale analysis of anatomical trees. In: IPMI 2013: information processing in medical imaging

  • Fink A, Rincón F (2015) Stiefel tropical linear spaces. J Combin Theory A 135:291–331

    Article  MathSciNet  MATH  Google Scholar 

  • Igor G, Stephan N, Ariela S (2009) Linear and nonlinear optimization, 2nd edn. Society for Industrial Mathematics, Philadelphia

    MATH  Google Scholar 

  • Joswig M (2017) Essentials of tropical combinatorics (in preparation). http://page.math.tu-berlin.de/~joswig/etc/index.html

  • Joswig M, Sturmfels B, Yu J (2007) Affine buildings and tropical convexity. Alban J Math 1:187–211

    MathSciNet  MATH  Google Scholar 

  • Kuo C, Wares JP, Kissinger JC (2008) The apicomplexan whole-genome phylogeny: an analysis of incongruence among gene trees. Mol Biol Evol 25:2689–2698

    Article  Google Scholar 

  • Lenstra HW (1983) Integer programming with a fixed number of variables. Math Oper Res 8:538–548

    Article  MathSciNet  MATH  Google Scholar 

  • Lin B, Sturmfels B, Tang X, Yoshida R (2017) Convexity in tree spaces. SIAM Discrete Math 3:2015–2038

    Article  MathSciNet  MATH  Google Scholar 

  • Lin B, Yoshida R (2018) Tropical Fermat–Weber points. SIAM Discrete Math. arXiv:1604.04674

  • Maclagan D, Sturmfels B (2015) Introduction to tropical geometry, graduate studies in mathematics, vol 161. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Maddison WP, Maddison D (2017) Mesquite: a modular system for evolutionary analysis. Version 3.31 http://mesquiteproject.org

  • Nye T, Tang X, Weyenberg G, Yoshida R (2017) Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees. Biometrika 104(4):901–922

    Article  MathSciNet  MATH  Google Scholar 

  • Richter-Gebert J, Sturmfels B, Theobald T (2005) First steps in tropical geometry. In: Litvinov GL, Maslov VP (eds) Idempotent mathematics and mathematical physics, vol 377. American Mathematical Society, Providence, pp 289–308

    Chapter  Google Scholar 

  • Weyenberg G, Yoshida R, Howe D (2016) Normalizing kernels in the Billera–Holmes–Vogtmann treespace. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2016.2565475

  • Zhao J, Yoshida R, Cheung SS, Haws D (2013) Approximate techniques in solving optimal camera placement problems. Int J Distrib Sens Netw 241913:15. https://doi.org/10.1155/2013/241913

    Google Scholar 

Download references

Acknowledgements

R. Y. was supported by Research Initiation Proposals from the Naval Postgraduate School and NSF Division of Mathematical Sciences 1622369. L. Z. was supported by an NSF Graduate Research Fellowship. X. Z. was supported by travel funding from the Department of Statistics at the University of Kentucky. The authors thank Bernd Sturmfels (UC Berkeley and MPI Leipzig) for many helpful conversations. The authors also thank Daniel Howe (University of Kentucky) for his input on Apicomplexa tree topologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruriko Yoshida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, R., Zhang, L. & Zhang, X. Tropical Principal Component Analysis and Its Application to Phylogenetics. Bull Math Biol 81, 568–597 (2019). https://doi.org/10.1007/s11538-018-0493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0493-4

Keywords

Navigation