Skip to main content
Log in

The Persistence of a Local Dialect When a National Standard Language is Present: An Evolutionary Dynamics Model of Cultural Diversity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In recent decades, cultural diversity loss has been a growing issue, which can be analyzed mathematically through the use of the formalism of the theory of cultural evolution. We here study the evolutionary dynamics of dialects in order to find the key processes for mitigating the loss of language diversity. We define dialects as different speech systems of the same language which are mutually intelligible. Specifically, we focus on the survival of a local dialect when competing against a national standard language, with the latter giving an advantage in occupational and economic contexts. We assume individuals may use different dialects, in response to two different situations: they may use the national language in a formal workplace, while they may use a local dialect in family or close friend meetings. We consider the choice of a dialect is guided by two forces: (1) differential attractiveness of the local/standard language and (2) willingness to speak the same dialect (conformity factor) inside a private group. We found that the evolutionary outcome critically depends on how conformity works. Conformity enhances the effect of differential attractiveness between the local dialect and the standard language if conformity works favoring only those states in which all speakers use the same dialect (unanimity pressure model), but conformity has no effect at all if it works in proportion to the fraction among peers (peer pressure model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abrams DM, Strogatz SH (2003) Linguistics: modelling the dynamics of language death. Nature 424(6951):900-900

    Article  Google Scholar 

  • Advani A, Reich B (2015) Melting pot or salad bowl: the formation of heterogeneous communities. Technical report, IFS Working Papers

  • Aizawa M (2012) Research on present-day dialect consciousness: nationalwide survery in 2010 and its statistical analysis (in Japanese). NINJAL Project Rev 3(1):26–37

    Google Scholar 

  • Amano T, Sandel B, Eager H, Bulteau E, Svenning JC, Dalsgaard B, Rahbek C, Davies RG, Sutherland WJ (2014) Global distribution and drivers of language extinction risk. Proc R Soc Lond B Biol Sci 281(1793):20141574

    Article  Google Scholar 

  • Asch SE (1955) Opinions and social pressure. Sci Am 193(5):31–35

    Article  Google Scholar 

  • Asch SE (1956) Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychol Monogr Gen Appl 70(9):1

    Article  Google Scholar 

  • Axelrod R (1997) The dissemination of culture a model with local convergence and global polarization. J Confl Resolut 41(2):203–226

    Article  Google Scholar 

  • Bai J (1994) Language attitude and the spread of standard Chinese in China. Lang Probl Lang Plan 18(2):128–138

    Article  Google Scholar 

  • Boyd R, Richerson PJ (1988) Culture and the evolutionary process. University of Chicago press, Chicago

    Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (1981) Cultural transmission and evolution: a quantitative approach, vol 16. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Clingingsmith D (2017) Are the world’s languages consolidating? The dynamics and distribution of language populations. Econ J 127(599):143–176

    Article  Google Scholar 

  • Crystal D (2007) How language works. Penguin, London

    Google Scholar 

  • Haugen E (1966) Dialect, language, nation. Am Anthropol 68(4):922–935

    Article  Google Scholar 

  • Inoue F (1991) New dialect and standard language. Style shift in tokyo. Area Cult Stud 42:49–68

    Google Scholar 

  • Inoue F (1993) The significance of new dialects. Dialectol Geolinguist 1:3–27

    Google Scholar 

  • Minett JW, Wang WS (2008) Modelling endangered languages: the effects of bilingualism and social structure. Lingua 118(1):19–45

    Article  Google Scholar 

  • Mira J, Seoane LF, Nieto JJ (2011) The importance of interlinguistic similarity and stable bilingualism when two languages compete. New J Phys 13(3):033007

    Article  Google Scholar 

  • Moseley C (2010) Atlas of the world’s languages in danger. http://www.unesco.org/culture/en/endangeredlanguages/atlas. Accessed 26 Aug 2016

  • Neary PR et al (2012) Competing conventions. Games Econ Behav 76(1):301–328

    Article  MathSciNet  Google Scholar 

  • Nowak MA, Krakauer DC (1999) The evolution of language. Proc Natl Acad Sci 96(14):8028–8033

    Article  Google Scholar 

  • Sekiguchi T, Nakamaru M (2011) How inconsistency between attitude and behavior persists through cultural transmission. J Theor Biol 271(1):124–135

    Article  MathSciNet  Google Scholar 

  • Sekiguchi T, Nakamaru M (2014) How intergenerational interaction affects attitude-behavior inconsistency. J Theor Biol 346:54–66

    Article  Google Scholar 

  • Shibatani M (1990) The languages of Japan. Cambridge University Press, Cambridge

    Google Scholar 

  • Szathmáry E, Smith JM (1995) The major transitions in evolution. WH Freeman Spektrum, Oxford

    Google Scholar 

  • Tang C (2014) The use of Chinese dialects: increasing or decreasing? In: Caspers J, Chen Y, Heeren W, Pacilly J, Schiller NO & van Zanten E (eds) Above and beyond the segments: experimental linguistics and phonetics. John Benjamins Publishing Company, pp 302–310

Download references

Acknowledgements

We would like to thank Mayuko Nakamaru, Hisashi Ohtsuki and the members of the Kyushu University Mathematical Biology Laboratory for their comments and suggestions. This work was carried out during C.M.T. visit to Kyushu University, Japan, supported by Kyushu University, under the program Kyushu University Friendship Scholarship, and CAPES. J.H.L. received financial support from Leading Graduate School Program for Decision Science to Kyushu University of MEXT, Japan. JSPS Grant-in-Aid for Basic Scientific Research (B) No. 15H04423 to Y.I. is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinthia M. Tanaka.

A Private Language Dynamics: Peer Pressure Model

A Private Language Dynamics: Peer Pressure Model

Here we discuss the general case for any group size \(n > 2\).

As mentioned in the main text, the contribution of the conformity effect for an A speaker (to conform to the dialect B) inside a group with m speakers of the A dialect is given by \(\xi (n-m)/(n-1)\). On the other hand, a B speaker inside the same group suffers the conformity pressure \(\xi m/(n-1)\) to start speaking the standard language A.

With this in mind, we can generalize the differential equations for any \(n \ge 2\), as shown below:

$$\begin{aligned} \frac{{\hbox {d}}z_0}{{\hbox {d}}t}&= -n \pi _\mathrm{a} z_0 + \left( \pi _\mathrm{b} + \xi \right) z_1 \end{aligned}$$
(15a)
$$\begin{aligned} \frac{{\hbox {d}}z_j}{{\hbox {d}}t}&= -\left[ \left( n-j\right) \pi _\mathrm{a} + j\pi _\mathrm{b} + \frac{2j\left( n-j\right) \xi }{n-1}\right] z_j \nonumber \\&\quad + \left( n-j+1\right) \left( \pi _\mathrm{a} + \frac{\left( j-1\right) \xi }{n-1}\right) z_{j-1} \nonumber \\&\quad + \left( j+1\right) \left( \pi _\mathrm{b} + \frac{\left( n-j-1\right) \xi }{n-1}\right) z_{j+1} \end{aligned}$$
(15b)
$$\begin{aligned} \frac{{\hbox {d}}z_n}{{\hbox {d}}t}&= -n \pi _\mathrm{b} z_n + \left( \pi _\mathrm{a} + \xi \right) z_{n-1} \end{aligned}$$
(15c)

with \(j=1,2,\ldots ,n-1\).

Thus, we can calculate \({\hbox {d}}z_\mathrm{A}/{\hbox {d}}t\) by using the definition \(z_\mathrm{A} = \dfrac{1}{n}\displaystyle \sum \nolimits _{j=1}^n j z_j\):

$$\begin{aligned} \begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} = \frac{{\hbox {d}}}{{\hbox {d}}t}\left( \frac{1}{n}\sum \limits _{j=1}^n j z_j\right) = \frac{1}{n}\sum \limits _{j=1}^n j \frac{{\hbox {d}}z_j}{{\hbox {d}}t} \end{aligned} \end{aligned}$$
(16)

Replacing the terms from Eqs. (15b) and (15c), we get the following equation:

$$\begin{aligned} \begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} =&\,\frac{-1}{n}\sum \limits _{j=1}^{n-1} j\left[ \left( n-j\right) \pi _\mathrm{a} + j\pi _\mathrm{b} + \frac{2\left( n-j\right) j\xi }{n-1} \right] z_j \\&+ \frac{1}{n}\sum \limits _{j=1}^{n-1} j\left( n-j+1\right) \left( \pi _\mathrm{a}+ \frac{\left( j-1\right) \xi }{n-1} \right) z_{j-1} \\&+ \frac{1}{n}\sum \limits _{j=1}^{n-1} j\left( j+1\right) \left( \pi _\mathrm{b}+\frac{\left( n-j-1\right) \xi }{n-1} \right) z_{j+1} \\&- n\pi _\mathrm{b} z_n + \left( \pi _\mathrm{a}+\xi \right) z_{n-1} \end{aligned} \end{aligned}$$
(17)

We can make a simple variable change in the last two summation terms so that they are also written in function of \(z_j\). This change yields:

$$\begin{aligned} \begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} =&\,\frac{-1}{n}\sum \limits _{j=1}^{n-1} j \left[ \left( n-j\right) \pi _\mathrm{a} + j\pi _\mathrm{b} + \frac{2\left( n-j\right) j\xi }{n-1} \right] z_j \\&+ \frac{1}{n}\sum \limits _{j=0}^{n-2} \left( j+1 \right) \left( n-j\right) \left( \pi _\mathrm{a}+ \frac{j \xi }{n-1} \right) z_j \\&+ \frac{1}{n}\sum \limits _{j=2}^n \left( j-1\right) j \left( \pi _\mathrm{b}+\frac{\left( n-j\right) \xi }{n-1} \right) z_j \\&- n\pi _\mathrm{b} z_n + \left( \pi _\mathrm{a}+\xi \right) z_{n-1} \end{aligned} \end{aligned}$$
(18)

Thus, we have some expression which can be written as:

$$\begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} = \sum \limits _{j=2}^{n-2} a_j z_j + C \end{aligned}$$
(19)

The coefficients \(a_j\) for \(z_j\), for \(j=2,3,\ldots ,n-2\) can be calculated from Eq. (18):

$$\begin{aligned} \begin{aligned} n a_j =&-j\left( n-j \right) \pi _\mathrm{a} - j^2 \pi _\mathrm{b} - \frac{2\left( n-j\right) j^2\xi }{n-1} + \left( n-j\right) \left( j+1\right) \pi _\mathrm{a} \\&+ \frac{\left( n-j\right) j \left( j+1 \right) \xi }{n-1} + \left( j-1\right) j \pi _\mathrm{b} + \frac{\left( n-j \right) j \left( j-1\right) \xi }{n-1} \end{aligned} \end{aligned}$$
(20)

Hence, after some algebraic manipulations, we can find that the expression for \(a_j\) is given by:

$$\begin{aligned} a_j = \frac{1}{n} \left[ \left( n-j \right) \pi _\mathrm{a} - j\pi _\mathrm{b}\right] \end{aligned}$$
(21)

The independent term C is formed from the terms outside the summation term (for \(j=2,3,\ldots ,n-2\)), cf. Eq. (19), and can be written as:

$$\begin{aligned} \begin{aligned} nC =&-\left[ \left( n-1 \right) \pi _\mathrm{a} + \pi _\mathrm{b} + 2\xi \right] z_1 - \left( n-1\right) \left[ \pi _\mathrm{a} + \left( n-1 \right) \pi _\mathrm{b} + 2\xi \right] z_{n-1} \\&+ n \pi _\mathrm{a} z_0 + 2 \left[ \left( n-1 \right) \pi _\mathrm{a} + \xi \right] z_1 + \left( n-2\right) \left( n-1\right) \left( \pi _\mathrm{b} + \frac{\xi }{n-1} \right) z_{n-1} \\&+ \left( n-1\right) n \pi _\mathrm{b} z_n - n^2 \pi _\mathrm{b} z_n + n \left( \pi _\mathrm{a} + \xi \right) z_{n-1} \end{aligned} \end{aligned}$$
(22)

Since \(z_0 = 1 - \sum \nolimits _{j=1}^n z_j\), we can group the terms for each \(z_i\), getting the following expression for C:

$$\begin{aligned} \begin{aligned} C&= \pi _\mathrm{a} - \left( \pi _\mathrm{a} +\pi _\mathrm{b} \right) \left[ z_1 + \left( n-1 \right) z_{n-1} + n z_n\right] -\pi _\mathrm{a}\sum \limits _{j=2}^{n-2}z_j \end{aligned} \end{aligned}$$
(23)

By replacing Eqs. (21) and (23) into Eq. (19), we get:

$$\begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} = - \sum \limits _{j=1}^n \frac{j\left( \pi _\mathrm{a} + \pi _\mathrm{b}\right) z_j}{n} + \pi _\mathrm{a} \end{aligned}$$
(24)

Finally, using the definition for \(z_\mathrm{A}\), the final expression for \({\hbox {d}}z_\mathrm{A}/{\hbox {d}}t\) can be written as:

$$\begin{aligned} \frac{{\hbox {d}}z_\mathrm{A}}{{\hbox {d}}t} = -\left( \pi _\mathrm{a} + \pi _\mathrm{b} \right) z_\mathrm{A} + \pi _\mathrm{a} \end{aligned}$$
(25)

From Eq. (25), we can conclude that for any \(n>2\), there is no dependence on \(\xi \) in both the equilibrium point and the dynamics of \(z_\mathrm{A}\), the average fraction of A speakers in a population divided into groups of n individuals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, C.M., Lee, JH. & Iwasa, Y. The Persistence of a Local Dialect When a National Standard Language is Present: An Evolutionary Dynamics Model of Cultural Diversity. Bull Math Biol 80, 2761–2786 (2018). https://doi.org/10.1007/s11538-018-0487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0487-2

Keywords

Navigation