Skip to main content

Advertisement

Log in

A Mathematical Model of the Inflammatory Response to Pathogen Challenge

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The human body’s immune response to bacterial challenge, even when successful in controlling the infection, can result in negative consequences for the host, including reduced functionality of associated tissues. We present and analyze a low-dimensional mathematical model of this immune response to pathogen invasion, incorporating the coordinated actions of active immune cells, and both pro- and anti-inflammatory cytokines. The model simulates both the positive (pathogen reduction) and negative (local tissue dysfunction) effects of the immune response and includes the important role of immunologic memory in the process of a return to stasis. This differential equation-based model is sufficiently general to be applicable to a wide range of human tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An G (2001) Agent-based computer simulation and SIRS: building a bridge between basic science and clinical trials. Shock 16(4):266–273

    Article  Google Scholar 

  • An G (2004) In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 32(10):2050–2060

    Article  Google Scholar 

  • Angebault C, Andremont A (2013) Antimicrobial agent exposure and the emergence and spread of resistant microorganisms: issues associated with study design. Eur J Clin Microbiol Infect 32:581–595. https://doi.org/10.1007/s10096-012-1795-3

    Article  Google Scholar 

  • Arciero J, Ermentrout G, Upperman J, Vodovotz Y, Rubin J (2010) Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS ONE 5(4):e10,066. https://doi.org/10.1371/journal.pone.0010066

    Article  Google Scholar 

  • Brandwood A, Noble K, Schindhelm K (1992) Phagocytosis of carbon particles by macrophages in vitro. Biomaterials 13(9):646–648

    Article  Google Scholar 

  • Caudill L (2013) A single-parameter model of the immune response to bacterial invasion. Bull Math Biol 75(9):1434–449

    Article  MathSciNet  MATH  Google Scholar 

  • Caudill L, Lawson B (2013) A hybrid agent-based and differential equations model for simulating antibiotic resistance in a hospital ward. In: Pasupathy R, Kim SH, Tolk A, Hill R, Kuhl M (eds) Proceedings of the 2013 winter simulation conference. IEEE, Piscataway, pp 1419–1430

  • Caudill L, Lawson B (2017) A unified inter-host and in-host model of antibiotic resistance and infection spread in a hospital ward. J Theor Biol 421:112–126

    Article  MathSciNet  MATH  Google Scholar 

  • Caudill L, Wares J (2016) The role of mathematical modeling in designing and evaluating antimicrobial stewardship programs. Curr Treat Options Infect Dis 8:124–138

    Article  Google Scholar 

  • Centers for Disease Control and Prevention: Antibiotic/Antimicrobial Resistance. http://www.cdc.gov/drugresistance/ (2015). Accessed 12 May 2015

  • Chaui-Berlinck J, Barbuto J, Monteiro L (2004) Conditions for pathogen elimination by immune systems. Theory Biosci 123:195–208

    Article  Google Scholar 

  • Chow C, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D, Betten B, Bartels J, Constantine G, Fink M, Billiar T, Vodovotz Y (2006) The acute inflammatory response in diverse shock states. Shock 24(1):74–84

    Article  Google Scholar 

  • Chung E, Kim S, Ma X (2006) Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res 16:154–161

    Article  Google Scholar 

  • Clatworthy A, Pierson E, Hung D (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541–548

    Article  Google Scholar 

  • Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32(10):2061–2070

    Article  Google Scholar 

  • Dahlberg D, Mariussen E, Goverud IL, Tnjum T, Mhlen J, Antal EA, Hassel B (2015) Staphyloccoal \(\alpha \)-hemolysin is neurotoxic and causes lysis of brain cells in vivo and in vitro. NeuroToxicology 48:61–67

    Article  Google Scholar 

  • Day J, Rubin J, Vodovotz Y, Chow C, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response: II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242(1):237–256

    Article  MathSciNet  Google Scholar 

  • Duffield J, Lupher M, Thannickal V, Wynn T (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol Mech Dis 8:241–276

    Article  Google Scholar 

  • Echeverria C, Montorfano I, Tapia P, Riedel C, Cabello-Verrugio C, Simon F (2014) Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors \(\beta 1\) and \(\beta 2\). Infect Immun 82(9):3678–686

    Article  Google Scholar 

  • Elgert K (2009) Immunology 2e. Wiley, New York

    Google Scholar 

  • Felise H, Nguyen H, Pfuetzner R, Barry K, Jackson S, Blanc MP, Bronstein P, Kline T, Miller S (2008) An inhibitor of Gram-negative bacterial virulence protein secretion. Cell Host Microbe 4:325–336

    Article  Google Scholar 

  • Fishman N (2012) Policy statement on antimicrobial stewardship by the society for healthcare epidemiology of america (shea), the infectious diseases society of america (idsa), and the pediatric infectious diseases society (pids). Infect Control Hosp Epidemiol 33:322–327

    Article  Google Scholar 

  • Gabrielsson J, Weiner D (2000) Pharmacokinetic and pharmacodynamic data analysis 3e. Swedish Pharmaceutical Society, Stockholm

    Google Scholar 

  • Geske G, Wezeman R, Siegel A, Blackwell H (2005) Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127:12762–12763

    Article  Google Scholar 

  • Hand K (2013) Antibiotic stewardship. Clin Med 13:499–503

    Article  Google Scholar 

  • Henson P, Johnston R (1987) Tissue injury in inflammation: oxidants, proteinases, and cationic proteins. J Clin Invest 79:669–674

    Article  Google Scholar 

  • Huang XC (1990) Uniqueness of limit cycles in a predator–prey model simulating an immune response. In: Mohler R, Asachenkov A (eds) Selected topics on mathematical models in immunology and medicine. IIASA, Laxenburg, pp 147–153

    Google Scholar 

  • Kaatz G, Seo S, Dorman N, Lerner S (1990) Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis 162:103–108

    Article  Google Scholar 

  • Kauppi A, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M (2003) Targeting bacterial virulence: inhibitors of Type III secretion in Yersinia. Chem Biol 10:241–249

    Article  Google Scholar 

  • Keeley EC, Mehrad B, Strieter RM (2011) The role of fibrocytes in fibrotic diseases of the lungs and heart. Fibrogenesis Tissue Repair. https://doi.org/10.1186/1755-1536-4-2

  • Lázár V, Nagy I, Spohn R, Csörgoö B, Györkei Á, Nyerges Á, Horváth B, Vörös A, Busa-fekete R, Hrtyan M, Bogos B, Méhi O, Fekete G, Szappanos B, Kégl B, Papp B, Pál C (2014) Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 5:1–12. https://doi.org/10.1038/ncomms5352

    Article  Google Scholar 

  • Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C (2014) Redox regulation of inflammation: old elements, a new story. Med Res Rev 35(2):306–340. https://doi.org/10.1002/med

    Article  Google Scholar 

  • Lelekov-Boissard T, Chapuisat G, Boissel JP, Grenier E, Dronne MA (2009) Exploration of beneficial and deleterious effects of inflammation in stroke: dynamics of inflammation cells. Philos Trans R Soc A 367:4699–4716

    Article  MathSciNet  MATH  Google Scholar 

  • Levy S (1998) The challenge of antibiotic resistance. Sci Am 278:46–53

    Article  Google Scholar 

  • Li MC, He S (2004) Il-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol 10(5):620–625

    Article  Google Scholar 

  • Louis E, Franchimont D, Piron A, Gevaert Y, Schaaf-Lafontaine N, Roland S, Mahieu P, Malaise M, de Groote D, Louis R, Belaiche J (2013) Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 113:401–406

    Article  Google Scholar 

  • Magill S, Edwards J, Bamberg W, Beldavs Z, Dumyati G, Kainer M, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray S, Thompson D, Wilson L, Fridkin S (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208

    Article  Google Scholar 

  • Majno G, LaGattuta M, Thompson T (1960) Cellular death and necrosis: Chemical, physical and morphologic changes in rat liver. Virchows Archiv fr pathologische Anatomie und Physiologie und fr klinische Medizin 333:421–465

    Google Scholar 

  • Moellering R, Blumgart H (2002) Understanding antibiotic resistance development in the immunocompromised host. Int J Infect Dis 6:S3–S4

    Article  Google Scholar 

  • Monchi M, Bellenfant F, Cariou A, Joly LM, Thebert D, Laurent I, Dhainaut JF, Brunet F (1998) Early predictive factors of survival in the acute respiratory distress syndrome: a multivariate analysis. Am J Respir Crit Care Med 158:1076–1081

    Article  Google Scholar 

  • Murray J, Matthay M, Luce J, Flick M (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723

    Article  Google Scholar 

  • Nelson D, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu Y, Cabrera R, Liu C, Davis G (2003) Long-term Interleukin 10 therapy in chronic Hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 38(4):859–868

    Article  Google Scholar 

  • Nowak M, Bangham C (1996) Population dynamics of immune responses to persistent viruses. Sci New Ser 272(5258):74–79

    Google Scholar 

  • Nowak M, May R, Sigmund K (1995) Immune responses against multiple epitopes. J Theor Biol 175:325–353

    Article  Google Scholar 

  • Opal S, DePalo V (2000) Anti-inflammatory cytokines. Chest 117:1162–1172

    Article  Google Scholar 

  • Paats M, Bergen I, Hanselaar W, van Zoelen EG, Hoogsteden H, Hendriks R, van der Eerden M (2013) Local and systemic cytokine profiles in nonsevere and severe community-acquired pneumonia. Eur Respir J 41:1378–1385

    Article  Google Scholar 

  • Perl M, Lomas-Neira J, Venet F, Chung CS, Ayala A (2011) Pathogenesis of indirect (secondary) acute lung injury. Expert Rev Respir Med 5:115–126

    Article  Google Scholar 

  • Rasko D, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128

    Article  Google Scholar 

  • Reich K, Garbe C, Blaschke V, Maurer C, Middel P, Westphal G, Lippert U, Neumann C (2001) Response of psoriasis to interleukin-10 is associated with suppression of cutaneous type 1 inflammation, downregulation of the epidermal interleukin-8/cxcr2 pathway and normalization of keratinocyte maturation. J Investig Dermatol 116(2):319–329

    Article  Google Scholar 

  • Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout G (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1):220–236

    Article  MathSciNet  Google Scholar 

  • Risco C, da Silva PP (1995) Cellular functions during activation and damage by pathogens: Immunogold studies of the interaction of bacterial endotoxins with target cells. Microsc Res Tech 31(2):141–158. https://doi.org/10.1002/jemt.1070310206

    Article  Google Scholar 

  • Roy A, Daun S, Clermont G, Rubin J, Vodovotz Y, Lagoa C, Parker R (2007) A mathematical model of acute inflammatory response to endotoxin challenge. In: Proceedings of the 2007 American institute of chemical engineers (AIChE) annual meeting. AIChE, Salt Lake City, UT, p 538

  • Sarac M, Peinado J, Leppla S, Lindberg I (2004) Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo. Infect Immun 73(1):602–605

    Article  Google Scholar 

  • Schentag J, Strenkoski-Nix L, Nix D, Forrest A (1998) Pharmacodynamic interactions of antibiotics alone and in combination. Clin Infect Dis 27:40–46

    Article  Google Scholar 

  • Schreiber S, Fedorak R, Nielsen O, Wild G, Williams C, Nikolaus S, Jacyna M, b Lashner, Gangl A, Rutgeerts P, Isaacs K, van Deventer S, Koningsberger J, Cohard M, LeBeaut A, Hanauer S (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Gastroenterology 119:1461–1472

    Article  Google Scholar 

  • Schultz R (1990) Role of cytokines in macrophage activation. Prog Drug Res 35:109–138

    Google Scholar 

  • Serhan C, Chiang N, Dyke TV (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    Article  Google Scholar 

  • Smith A, McCullers J, Adler F (2011) Mathematical model of a three-stage innate immune response to a pneumococcal lung infection. J Theor Biol 276:106–116

    Article  MathSciNet  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher H, Scheld W, Bartlett J, Edwards J (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of america. Clin Infect Dis 46:155–164

    Article  Google Scholar 

  • Steinhauser M, Hogaboam C, Kunkel S, Lukacs N, Strieter R, Standiford T (1999) Il-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol 162:392–399

    Google Scholar 

  • Sursal T, Stearns-Kurosawa D, Itagaki K, Oh S, Kurosawa S, Hauser C (2013) Plasma bacterial and mitochondrial dna distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock 39(1):55–62

    Google Scholar 

  • Ternent L, Dyson R, Krachler AM, Jabbari S (2015) Bacterial fitness shapes the population dynamics of antibiotic-resistant and susceptible bacteria in a model of combined antibiotic and antivirulence treatment. J Theor Biol 372:1–11

    Article  MATH  Google Scholar 

  • Turnidge J, Paterson D (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408

    Article  Google Scholar 

  • Vincent J, Moreno R, Takala J, Willatts S, Mendonca AD, Bruining H, Reinhart C, Suter P, Thijs L (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710

    Article  Google Scholar 

  • Virella G (1998) Introduction to medical immunology 4e. CRC Press, New York

    Google Scholar 

  • Wallach D, Kang TB, Kovalenko A (2014) Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14:51–59

    Article  Google Scholar 

  • Ware L, Matthay M (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  Google Scholar 

  • Wheeler A, Bernard G (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1565

    Article  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen J, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061

    Article  Google Scholar 

  • Wu J, Ben-Arieh D, Shi Z (2011) An autonomous multi-agent simulation model for acute inflammatory response. Int J Artif Life Res 2(2):105–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lester Caudill.

Appendix

Appendix

Proof of Theorem 4

Letting \(\epsilon >0\), we will use the shorthand notation \(P_\epsilon \equiv P_{\mathrm{max}}-\epsilon \), \(\phi _\epsilon \equiv \phi (P_\epsilon )\), \(\delta _\epsilon \equiv \delta (P_\epsilon )\), \(\psi _\epsilon \equiv \psi (P_\epsilon ,0)\), and \(\beta _\epsilon \equiv \beta (P_\epsilon ,0)\).

Note that \(P_{\mathrm{null}}(P)\) attains an absolute minimum \(M_\epsilon >0\) on \(0\le P\le P_\epsilon \). By Property 3(b) of Lemma 3, it suffices to demonstrate the existence of \(q>0\) and \(c>0\) for which

$$\begin{aligned} I_+(P_\epsilon ,0) < M_\epsilon . \end{aligned}$$

To this end, we can choose q to satisfy \(\displaystyle {0< q < \frac{r}{\lambda ^{\frac{3}{2}}}\left( M_\epsilon +B\right) }\), from which it follows that

$$\begin{aligned} \frac{\sqrt{\lambda }q}{M_\epsilon +B} < \frac{r}{\lambda }, \end{aligned}$$

and, consequently,

$$\begin{aligned} -\frac{\delta _\epsilon }{M_\epsilon +B} = \frac{\sqrt{\lambda }q}{M_\epsilon +B}\frac{P_\epsilon }{K+P_\epsilon } < \frac{r}{\lambda } + ue^{-\chi P_\epsilon } = \phi _\epsilon , \end{aligned}$$

so that

$$\begin{aligned} \phi _\epsilon + \frac{\delta _\epsilon }{M_\epsilon +B} > 0, \end{aligned}$$

thus making it possible to choose c to satisfy \(\displaystyle {0< c < \frac{1}{\sqrt{\lambda }}\left( \frac{K+P_\epsilon }{P_\epsilon }\right) M_\epsilon \left( \phi _\epsilon + \frac{\delta _\epsilon }{M_\epsilon +B}\right) }\). Then, we have

$$\begin{aligned} -\frac{\psi _\epsilon }{B}&= \sqrt{\lambda }c\frac{P_\epsilon }{K+P_\epsilon }< M_\epsilon \left( \phi _\epsilon + \frac{\delta _\epsilon }{M_\epsilon +B}\right) ,\\&\implies -\psi _\epsilon \left( \frac{M_\epsilon }{B}+1\right)< M_\epsilon \phi _\epsilon (M_\epsilon +B) + M_\epsilon \delta _\epsilon ,\\&\implies -\psi _\epsilon< M_\epsilon \left( \phi _\epsilon M_\epsilon + \phi _\epsilon B + \frac{\psi _\epsilon }{B} + \delta _\epsilon \right) = \phi _\epsilon M_\epsilon ^2 + \beta _\epsilon M_\epsilon ,\\&\implies \beta _\epsilon ^2-4\phi _\epsilon \psi _\epsilon < 4\phi _\epsilon ^2 M_\epsilon ^2 + 4\phi _\epsilon \beta _\epsilon M_\epsilon + \beta _\epsilon ^2 = \left( 2\phi _\epsilon M_\epsilon + \beta _\epsilon \right) ^2. \end{aligned}$$

Taking positive square roots yields

$$\begin{aligned} \sqrt{\beta _\epsilon ^2-4\phi _\epsilon \psi _\epsilon } < 2\phi _\epsilon M_\epsilon + \beta _\epsilon , \end{aligned}$$

so that

$$\begin{aligned} I_+(P_\epsilon ,0) = \frac{-\beta _\epsilon + \sqrt{\beta _\epsilon ^2-4\phi _\epsilon \psi _\epsilon }}{2\phi _\epsilon } < M_\epsilon , \end{aligned}$$

as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caudill, L., Lynch, F. A Mathematical Model of the Inflammatory Response to Pathogen Challenge. Bull Math Biol 80, 2242–2271 (2018). https://doi.org/10.1007/s11538-018-0459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0459-6

Keywords

Navigation