Skip to main content

Advertisement

Log in

An Alternative Formulation for a Distributed Delayed Logistic Equation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study an alternative single species logistic distributed delay differential equation (DDE) with decay-consistent delay in growth. Population oscillation is rarely observed in nature, in contrast to the outcomes of the classical logistic DDE. In the alternative discrete delay model proposed by Arino et al. (J Theor Biol 241(1):109–119, 2006), oscillatory behavior is excluded. This study adapts their idea of the decay-consistent delay and generalizes their model. We establish a threshold for survival and extinction: In the former case, it is confirmed using Lyapunov functionals that the population approaches the delay modified carrying capacity; in the later case the extinction is proved by the fluctuation lemma. We further use adaptive dynamics to conclude that the evolutionary trend is to make the mean delay in growth as short as possible. This confirms Hutchinson’s conjecture (Hutchinson in Ann N Y Acad Sci 50(4):221–246, 1948) and fits biological evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arino J, van den Driessche P (2006) Time delays in epidemic models: modeling and numerical considerations. In: Delay differential equations and applications. Springer, pp 539–578

  • Arino J, Wang L, Wolkowicz GSK (2006) An alternative formulation for a delayed logistic equation. J Theor Biol 241(1):109–119

    Article  MathSciNet  Google Scholar 

  • Cooke KL, van den Driessche P (1996) Analysis of an SEIRS epidemic model with two delays. J Math Biol 35(2):240–260

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing JM (1977a) Stable positive periodic solutions of the time-dependent logistic equation under possible hereditary influences. J Math Anal Appl 60(3):747–754

  • Cushing JM (1977b) Time delays in single species growth models. J Math Biol 4(3):257–264

  • Diekmann O, Gyllenberg M (2012) Equations with infinite delay: blending the abstract and the concrete. J Differ Equ 252(2):819–851

    Article  MathSciNet  MATH  Google Scholar 

  • Driver RD (1962) Existence and stability of solutions of a delay-differential system. Arch Ration Mech Anal 10(1):401–426

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote HW, Stech HW, van den Driessche P (1981) Nonlinear oscillations in epidemic models. SIAM J Appl Math 40(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch WM, Hanisch H, Gabriel JP (1985) Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun Pure Appl Math 38(6):733–753

    Article  MathSciNet  MATH  Google Scholar 

  • Holder BP, Beauchemin CA (2011) Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture. BMC Public Health 11(1):S10

    Article  Google Scholar 

  • Hutchinson GE (1948) Circular causal systems in ecology. Ann N Y Acad Sci 50(4):221–246

    Article  Google Scholar 

  • Kingsland S (1982) The refractory model: the logistic curve and the history of population ecology. Q Rev Biol 57(1):29–52

    Article  Google Scholar 

  • Kiss G, Krauskopf B (2010) Stability implications of delay distribution for first-order and second-order systems. Discrete Contin Dyn Ser B 13(2):327–345

    Article  MathSciNet  MATH  Google Scholar 

  • LaSalle J (1976) The stability of dynamical systems. In: CBMS-NSF regional conference series in applied mathematics. SIAM, Philadelphia

  • MacDonald N (2008) Biological delay systems: linear stability theory, vol 9. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Maple W (2009) Maple (version 13). Waterloo, Ontario, Canada: Waterloo Maple Software

  • MATLAB: version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts (2017)

  • McCluskey CC (2015) Using Lyapunov functions to construct Lyapunov functionals for delay differential equations. SIAM J Appl Dyn Syst 14(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Miller R (1966) On Volterra’s population equation. SIAM J Appl Math 14(3):446–452

    Article  MathSciNet  MATH  Google Scholar 

  • Newton I (2010) Population ecology of raptors. A&C Black, London

    Google Scholar 

  • Nisbet RM, Gurney W (2003) Modelling fluctuating populations: reprint of first Edition (1982). Blackburn Press

  • Ruan S (2006) Delay differential equations in single species dynamics. In: Arino O, Hbid M (ed) Delay differential equations and applications. NATO Science Series (II. Mathematics, Physics and Chemistry), vol 205. Springer, Dordrecht, pp 477–517

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corr Math Phys 10:113–121

    Google Scholar 

  • Volterra V (1959) Theory of functionals and of integral and integro-differential equations. Dover, Mineola

    MATH  Google Scholar 

Download references

Acknowledgements

The research of Chiu-Ju Lin and Gail S. K. Wolkowicz was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant and Accelerator supplement. The research of Lin Wang was also supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Ju Lin.

Appendices

Appendix

Dependence of \({\bar{N}}\) on Parameters \(\mu \) and \(\tau \)

Lemma 3

\({\bar{N}}\) is a decreasing function of \(\mu \).

Proof

From Eq. (13), the positive equilibrium occurs at the intersection of \(f_1(x)\) and \(f_2(x)\), defined in (14). Considering \({\bar{N}}\) as a function of \(\mu \), denote \(f_1(x,\mu )\) and \(f_2(x,\mu )\) as before. Note that, when \(\mu _1<\mu _2\), \(f_1(x,\mu _1)\) and \(f_1(x,\mu _2)\) do not intersect, and \(f_2(x,\mu _1)\) only intersects \(f_2(x,\mu _2)\) at \(x=0\). Because \(f_1(0,\mu _1)>f_1(0,\mu _2)\), it follows that \(f_1(x,\mu _1)>f_1(x,\mu _2)\) and so \(f_1\) is decreasing in \(\mu \). From the fact that \(f_2\) is increasing in \(\mu \), it follows that the intersection point \({\bar{N}}\) is a decreasing function of \(\mu \). \(\square \)

Lemma 4

\({\bar{N}}\) is a decreasing function of the mean delay \(\tau \) for the kernel satisfying (10).

Proof

Consider \({\bar{N}}\) as a function of \(\tau \) and denote the partial derivative with respective to \(\tau \) by \(\partial _{\tau }\). Then from (13)

$$\begin{aligned} \gamma \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} \partial _{\tau } k(s,\tau )}{\mu +\kappa (1-{\text{ e }}^{-\mu s}){\bar{N}}}\text {d}s-\gamma \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} k(s,\tau )\kappa (1-{\text{ e }}^{-\mu s}){\bar{N}}'(\tau )}{[\mu +\kappa (1-{\text{ e }}^{-\mu s}){\bar{N}}]^2}\text {d}s =\kappa {\bar{N}}'(\tau ) \end{aligned}$$

or

$$\begin{aligned} {\bar{N}}'(\tau )=\frac{\gamma \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} \partial _{\tau } k(s,\tau )}{\mu +\kappa (1-{\text{ e }}^{-\mu s}){\bar{N}}}\text {d}s}{\kappa \left( 1+\gamma \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} k(s,\tau )(1-{\text{ e }}^{-\mu s})}{[\mu +\kappa (1-{\text{ e }}^{-\mu s}){\bar{N}}]^2}\text {d}s \right) }. \end{aligned}$$

If k is the kernel for the model with the gamma distribution, then \(\partial _{\tau }k(s,\tau )<0\) and so \( {\bar{N}}'(\tau )<0\).

If k is the kernel for the model with the uniform distribution, then \(k(s,\tau )=\frac{\rho }{\tau }\chi _{[\tau (1-\frac{1}{2\rho }),\tau (1+\frac{1}{2\rho })]}\), where \(\chi _I(s)\) is 1 if \(s\in I\) and is 0 otherwise. Using the change of variables \(u=\frac{s}{\tau }\),

$$\begin{aligned}\begin{aligned}&\partial _{\tau }\displaystyle \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} k(s,\tau )}{\mu +\kappa (1- {\text{ e }}^{-\mu s}){\bar{N}}}\text {d}s\\&\quad = \, \partial _{\tau }\displaystyle \int _{1-\frac{1}{2\rho }}^{1+\frac{1}{2\rho }}\frac{\mu {\text{ e }}^{-\mu \tau u} \rho }{\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}}\text {d}u\\&\quad =\displaystyle \int _{1-\frac{1}{2\rho }}^{1+\frac{1}{2\rho }}\frac{1}{(\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}})^2}[ -\mu ^3u\rho {\text{ e }}^{-\mu \tau u}\\&\qquad -\,\mu \rho {\text{ e }}^{-\mu \tau u}\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}' ]\text {d}u=\kappa {\bar{N}}'(\tau ). \end{aligned} \end{aligned}$$

Thus we have \({\bar{N}}'(\tau )<0\).

If k is the kernel for the model with the tent distribution, then \(k(s,\tau )=\frac{s}{\tau ^2}\chi _{[0,\tau ]}+\frac{2\tau -s}{\tau ^2}\chi _{[\tau ,2\tau ]}\). Let \(u=\frac{s}{\tau }\),

$$\begin{aligned} \begin{aligned}&\partial _{\tau }\displaystyle \int _0^{\infty }\frac{\mu {\text{ e }}^{-\mu s} k(s,\tau )}{\mu +\kappa (1- {\text{ e }}^{-\mu s}){\bar{N}}}\text {d}s\\&\quad = \partial _{\tau }\displaystyle \int _{0}^{1}\frac{\mu {\text{ e }}^{-\mu \tau u} u}{\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}}\text {d}u+\partial _{\tau }\displaystyle \int _{1}^{2}\frac{\mu {\text{ e }}^{-\mu \tau u} (1-u)}{\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}}\text {d}u\\&\quad = \displaystyle \int _{0}^{1}\frac{1}{(\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}})^2}[ -\mu ^3u^2 {\text{ e }}^{-\mu \tau u}-\mu u {\text{ e }}^{-\mu \tau u}\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}' ]\text {d}u\\&\qquad +\displaystyle \int _{1}^{2}\frac{1}{(\mu +\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}})^2}[ -\mu ^3u(1-u)\rho {\text{ e }}^{-\mu \tau u}\\&\qquad -\,\mu (1-u) {\text{ e }}^{-\mu \tau u}\kappa (1-{\text{ e }}^{-\mu \tau u}){\bar{N}}' ]\text {d}u\\&\quad =\kappa {\bar{N}}'(\tau ) . \end{aligned} \end{aligned}$$

Thus we have \({\bar{N}}'(\tau )<0\). \(\square \)

Appendix

Invasion Exponent

If k is the kernel for the model with the uniform distribution (12b), then the invasion exponent is

$$\begin{aligned} S_{\tau _1}(\tau _2)=\frac{\gamma }{\kappa {\bar{N}}(\tau _1)}\frac{\rho }{\tau _2}\ln \left( \frac{\mu +\kappa (1-{\text{ e }}^{-\mu \tau _2(1+\frac{1}{2\rho })}){\bar{N}}(\tau _1)}{\mu +\kappa (1-{\text{ e }}^{-\mu \tau _2(1-\frac{1}{2\rho })}){\bar{N}}(\tau _1)} \right) -\left( \mu +\kappa {\bar{N}}(\tau _1)\right) . \end{aligned}$$

If k is the kernel for the model with the tent distribution (12d), then using Maple (2009), the invasion exponent \(S_{\tau _1}(\tau _2)\) is

$$\begin{aligned}&\frac{\gamma }{\tau _2^2\mu ^2\kappa ^2{\bar{N}}(\tau _1)}\left[ 2\tau _2\mu \ln \left( -\kappa {\bar{N}}(\tau _1){{\text{ e }}^{2\tau _2\mu }}-\mu {{\text{ e }}^{2 \tau _2\mu }}+\kappa {\bar{N}}(\tau _1) \right) \right. \\&\quad \left. -\,2\tau _2\mu \ln \left( {\frac{\kappa {\bar{N}}(\tau _1){{\text{ e }} ^{2\tau _2\mu }}+\mu {{\text{ e }}^{2\tau _2\mu }}-\kappa {\bar{N}}(\tau _1)}{\kappa {\bar{N}}(\tau _1)+\mu }} \right) \right. \\&\quad \left. -\,2 \tau _2\mu \ln \left( -\kappa {\bar{N}}(\tau _1){{\text{ e }}^{\tau _2\mu }}+\kappa {\bar{N}}(\tau _1)-\mu {{\text{ e }}^{ \tau _2\mu }} \right) \right. \\&\quad \left. +\,2\tau _2\mu \ln \left( {\frac{\kappa {\bar{N}}(\tau _1){{\text{ e }}^{ \tau _2\mu }}-\kappa {\bar{N}}(\tau _1)+\mu {{\text{ e }}^{\tau _2\mu }}}{\kappa {\bar{N}}(\tau _1)+\mu }} \right) \right. \\&\quad \left. +\,{ dilog} \left( -{\frac{\kappa {\bar{N}}(\tau _1){{\text{ e }}^{-2\tau _2\mu }}-\kappa {\bar{N}}(\tau _1)-\mu }{\kappa {\bar{N}}(\tau _1)+\mu }} \right) \right. \\&\quad \left. -\,2{ dilog} \left( -{\frac{\kappa {\bar{N}}(\tau _1){{\text{ e }}^{-\tau _2\mu }}-\kappa {\bar{N}}(\tau _1)- \mu }{\kappa {\bar{N}}(\tau _1)+\mu }} \right) \right. \\&\quad \left. +\,{ dilog} \left( {\frac{\mu }{\kappa {\bar{N}}(\tau _1)+\mu }} \right) \right] , \end{aligned}$$

where

$$\begin{aligned} { dilog} \left( x \right) =\int _1^x\frac{\ln t}{1-t}\text {d}t . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CJ., Wang, L. & Wolkowicz, G.S.K. An Alternative Formulation for a Distributed Delayed Logistic Equation. Bull Math Biol 80, 1713–1735 (2018). https://doi.org/10.1007/s11538-018-0432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0432-4

Keywords

Navigation