Skip to main content
Log in

Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Bathe M, Chang F (2010) Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends Microbiol 18:38–45

    Article  Google Scholar 

  • Bertozzi A, Esedoglu S, Gilette A (2007) Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans Image Process 16:285–291

    Article  MathSciNet  MATH  Google Scholar 

  • Bi E, Maddox P, Lew D, Salmon E, McMilland E, Yeh E, Prihngle J (1998) Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 142:1301–1312

    Article  Google Scholar 

  • Botella O, Ait-Messaoud M, Pertat A, Cheny Y, Rigal C (2015) The LS-STAG immersed boundary method for non-Newtonian flows in irregular geometries: flow of shear-thinning liquids between eccentric rotating cylinders. Theor Comput Fluid Dyn 29:93–110

    Article  Google Scholar 

  • Britton N (2003) Essential mathematical biology. Springer, Berlin

    Book  MATH  Google Scholar 

  • Cahn J, Hilliard J (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267

    Article  Google Scholar 

  • Calvert M, Wright G, Lenong F, Chiam K, Chen Y, Jedd G, Balasubramanian M (2011) Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction. J Cell Biol 195:799–813

    Article  Google Scholar 

  • Carvalgo A, Oegema ADK (2009) Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137:926–937

    Article  Google Scholar 

  • Celton-Morizur S, Dordes N, Fraisier V, Tran P, Paoletti A (2004) C-terminal anchoring of mid1p to membranes stabilized cytokinetic ring position in early mitosis in fission yeast. Mol Cellul Biol 24:10621–10635

    Article  Google Scholar 

  • Chang F, Drubin D, Nurse P (1997) cdc12p, a protein required for cytokineses in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol 137:169–182

    Article  Google Scholar 

  • Chen Y, Wise S, Shenoy V, Lowengrub J (2014a) A stable scheme for a nonlinear multiphase tumor growth model with an elastic membrane. Int J Numer Methods Biomed Eng 30(7):726–754

    Article  MathSciNet  Google Scholar 

  • Chen Z, Hickel S, Devesa A, Berland J, Adams N (2014b) Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor Comput Fluid Dyn 28(1):1–21

    Article  Google Scholar 

  • Chorin A (1968) Numerical solution of the Navier–Stokes equation. Math Comput 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  • Daniels M, Wang Y, Lee M, Venkitaraman A (2004) Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein brca2. Science 306(5697):876–879

    Article  Google Scholar 

  • de Fontaine D (1967) A computer simulation of the evolution of coherent composition variations in solid solutions. Ph.D. thesis, Northwestern University

  • Eyer D (1998) Unconditionally gradient stable scheme marching the Cahn–Hilliard equation. MRS Proc 529:39–46

    Article  Google Scholar 

  • Gisselsson D, Jin Y, Lindgren D, Persson J, Gisselsson L, Hanks S, Sehic D, Mengelbier L, Øra I, Rahman N et al (2010) Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl Acad Sci 107(47):20489–20493

    Article  Google Scholar 

  • Gompper G, Zschoke S (1991) Elastic properties of interfaces in a Ginzburg–Landau theory of swollen micelles, droplet crystals and lamellar phases. Europhys Lett 16:731–736

    Article  Google Scholar 

  • Harlow E, Welch J (1965) Numerical calculation of time dependent viscous incompressible flow with free surface. Phys Fluid 8:2182–2189

    Article  MathSciNet  MATH  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforschung C 28:693–703

    Google Scholar 

  • Jochova J, Rupes I, Streiblova E (1991) F-actin contractile rings in protoplasts of the yeast schizosaccharomyces. Cell Biol Int Rep 15:607–610

    Article  Google Scholar 

  • Kamasaki T, Osumi M, Mabuchi I (2007) Three-dimensional arrangement of f-actin in the contractile ring of fission yeast. J Cell Biol 178:765–771

    Article  Google Scholar 

  • Kang B, Mackey M, El-Sayed M (2010) Nuclear targeting of gold nanoparticles in cancer cells induces dna damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519

    Article  Google Scholar 

  • Kim J (2005) A continuous surface tension force formulation for diffuse-interface models. J Comput Phys 204(2):784–804

    Article  MathSciNet  MATH  Google Scholar 

  • Koudehi M, Tang H, Vavylonis D (2016) Simulation of the effect of confinement in actin ring formation. Biophys J 110(3):126a

    Article  Google Scholar 

  • Lee H, Kim J (2008) A second-order accurate non-linear difference scheme for the n-component Cahn–Hilliard system. Physica A 387:4787–4799

    Article  MathSciNet  Google Scholar 

  • Lee H, Choi J, Kim J (2012) A practically unconditionally gradient stable scheme for the n-component Cahn–Hilliard system. Physica A 391:1009–1019

    Article  Google Scholar 

  • Lee S, Jeong D, Choi Y, Kim J (2016a) Comparison of numerical methods for ternary fluid flows: immersed boundary, level-set, and phase-field methods. J KSIAM 20(1):83–106

    MathSciNet  MATH  Google Scholar 

  • Lee S, Jeong D, Lee W, Kim J (2016b) An immersed boundary method for a contractile elastic ring in a three-dimensional newtonian fluid. J Sci Comput 67(3):909–925

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Kim J (2016) Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method. Math Biosci 271:118–127

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Yun A, Kim J (2012) An immersed boundary method for simulating a single axisymmetric cell growth and division. J Math Biol 65:653–675

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Jeong D, Choi J, Lee S, Kim J (2015) Fast local image inpainting based on the local Allen–Cahn model. Digital Signal Process 37:65–74

    Article  Google Scholar 

  • Lim S (2010) Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid. Phys Fluids 22(2):024104

    Article  MATH  Google Scholar 

  • Lim S, Ferent A, Wang X, Peskin C (2008) Dynamics of a closed rod with twist and bend in fluid. SIAM J Sci Comput 31(1):273–302

    Article  MathSciNet  MATH  Google Scholar 

  • Mandato C, Berment W (2001) Contraction and polymerization cooperate to assemble and close actomyosin rings round xenopus oocyte wounds. J Cell Biol 154:785–797

    Article  Google Scholar 

  • Miller A (2011) The contractile ring. Curr Biol 21:R976–R978

    Article  Google Scholar 

  • Pelham R, Chang F (2002) Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419:82–86

    Article  Google Scholar 

  • Peskin C (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard T, Cooper J (2008) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  Google Scholar 

  • Posa A, Balaras E (2014) Model-based near-wall reconstructions for immersed-boundary methods. Theor Comput Fluid Dyn 28(4):473–483

    Article  Google Scholar 

  • Shlomovitz R, Gov N (2008) Physical model of contractile ring initiation in dividing cells. Biophys J 94:1155–1168

    Article  Google Scholar 

  • Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic Press, London

    MATH  Google Scholar 

  • Vahidkhah K, Abdollahi V (2012) Numerical simulation of a flexible fiber deformation in a viscous flow by the immersed boundary-lattice Boltzmann method. Commun Nonlinear Sci Numer Simul 17(3):1475–1484

    Article  MathSciNet  MATH  Google Scholar 

  • Vavylonis D, Wu J, Hao S, O’Shaughnessy B, Pollard T (2008) Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319:97–100

    Article  Google Scholar 

  • Wang MZY (2008) Distinct pathways for the early recruitment of myosin ii and actin to the cytokinetic furrow. Mol Biol Cell 19(1):318–326

    Article  Google Scholar 

  • Wheeler A, Boettinger W, McFadden G (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45(10):7424–7439

    Article  Google Scholar 

  • Zang J, Spudich J (1998) Myosin ii localization during cytokinesis occurs by a mechanism that does not require its motor domain. Proc Natl Acad Sci 95(23):13652–13657

    Article  Google Scholar 

  • Zhao J, Wang Q (2016a) A 3d multi-phase hydrodynamic model for cytokinesis of eukaryotic cells. Commun Comput Phys 19(03):663–681

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Wang Q (2016b) Modeling cytokinesis of eukaryotic cells driven by the actomyosin contractile ring. Int J Numer Methods Biomed Eng 32(12):e027774

  • Zhou Z, Munteanu E, He J, Ursell T, Bathe M, Huang K, Chang F (2015) The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis. Mol Biol Cell 26(1):78–90

    Article  Google Scholar 

Download references

Acknowledgements

The author was supported by the National Institute for Mathematical Sciences (NIMS) grant funded by the Korean government (No. A21300000) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1C1B1001937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunggyu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S. Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain. Bull Math Biol 80, 583–597 (2018). https://doi.org/10.1007/s11538-018-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0390-x

Keywords

Navigation