Skip to main content
Log in

Modelling contractile ring formation and division to daughter cells for simulating proliferative multicellular dynamics

  • Regular Article – Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Cell proliferation is a fundamental process underlying embryogenesis, homeostasis, wound healing, and cancer. The process involves multiple events during each cell cycle, such as cell growth, contractile ring formation, and division to daughter cells, which affect the surrounding cell population geometrically and mechanically. However, existing methods do not comprehensively describe the dynamics of multicellular structures involving cell proliferation at a subcellular resolution. In this study, we present a novel model for proliferative multicellular dynamics at the subcellular level by building upon the nonconservative fluid membrane (NCF) model that we developed in earlier research. The NCF model utilizes a dynamically-rearranging closed triangular mesh to depict the shape of each cell, enabling us to analyze cell dynamics over extended periods beyond each cell cycle, during which cell surface components undergo dynamic turnover. The proposed model represents the process of cell proliferation by incorporating cell volume growth and contractile ring formation through an energy function and topologically dividing each cell at the cleavage furrow formed by the ring. Numerical simulations demonstrated that the model recapitulated the process of cell proliferation at subcellular resolution, including cell volume growth, cleavage furrow formation, and division to daughter cells. Further analyses suggested that the orientation of actomyosin stress in the contractile ring plays a crucial role in the cleavage furrow formation, i.e., circumferential orientation can form a cleavage furrow but isotropic orientation cannot. Furthermore, the model replicated tissue-scale multicellular dynamics, where the successive proliferation of adhesive cells led to the formation of a cell sheet and stratification on the substrate. Overall, the proposed model provides a basis for analyzing proliferative multicellular dynamics at subcellular resolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are partially available from the corresponding author on reasonable request.

References

  1. B. O’Shaughnessy, S. Thiyagarajan, Biophys. Rev. 10, 1667 (2018)

    Article  Google Scholar 

  2. J.A. Knoblich, Nat. Rev. Mol. Cell. Biol. 11, 849 (2010)

    Article  Google Scholar 

  3. D. Ghose, T. Elston, D. Lew, Annu. Rev. Biophys. 51, 431 (2022)

    Article  Google Scholar 

  4. Z. Tang, Y. Hu, Z. Wang, K. Jiang, C. Zhan, W.F. Marshall, N. Tang, Dev. Cell. 44, 313 (2018)

    Article  Google Scholar 

  5. T. Kondo, S. Hayashi, Nature 494, 125 (2013)

    Article  ADS  Google Scholar 

  6. B.I. Shraiman, Proc. Natl. Acad. Sci. 102, 3318 (2005)

    Article  ADS  Google Scholar 

  7. R. Kikuchi, J. Chem. Phys. 24, 861 (1956)

    Article  ADS  Google Scholar 

  8. H. Honda, Y. Ogita, S. Higuchi, K. Kani, J. Morphol. 174, 25 (1982)

    Article  Google Scholar 

  9. T. Nagai, S. Ohta, K. Kawasaki, T. Okuzono, Ph. Trans.: Multinat. J. 28, 177 (1990)

    Article  ADS  Google Scholar 

  10. H. Honda, J. Theor. Biol. 72, 523 (1978)

    Article  ADS  Google Scholar 

  11. H. Honda, H. Yamanaka, M. Dan-Sohkawa, J. Theor. Biol. 106, 423 (1984)

    Article  ADS  Google Scholar 

  12. M. Bock, A.K. Tyagi, J.-U. Kreft, W. Alt, Bull. Math. Biol. 72, 1696 (2010)

    Article  MathSciNet  Google Scholar 

  13. J.A. Glazier, F. Graner, Phys. Rev. E 47, 2128 (1993)

    Article  ADS  Google Scholar 

  14. T. Hirashima, E.G. Rens, R.M.H. Merks, Dev. Growth Differ. 59, 329 (2017)

    Article  Google Scholar 

  15. F. Graner, J.A. Glazier, Phys. Rev. Lett. 69, 2013 (1992)

    Article  ADS  Google Scholar 

  16. A. Moure, H. Gomez, Arch. Comput. Methods Eng. 28, 311 (2021)

    Article  MathSciNet  Google Scholar 

  17. M. Nonomura, PLoS ONE 7, 33501 (2012)

    Article  ADS  Google Scholar 

  18. M. Akiyama, M. Nonomura, A. Tero, R. Kobayashi, Phys. Biol. 16, 016005 (2018)

    Article  ADS  Google Scholar 

  19. B. Lim, P.A.J. Bascom, R.S.C. Cobbold, Biorheology 34, 423 (1997)

    Article  Google Scholar 

  20. K. Tsubota, S. Wada, T. Yamaguchi, Comput. Methods Progr. Biomed. 83, 139 (2006)

    Article  Google Scholar 

  21. J. Mauer, S. Mendez, L. Lanotte, F. Nicoud, M. Abkarian, G. Gompper, D.A. Fedosov, Phys. Rev. Lett. 121, 118103 (2018)

    Article  ADS  Google Scholar 

  22. S. Okuda, Y. Inoue, M. Eiraku, Y. Sasai, T. Adachi, Biomech. Model. Mechanobiol. 12, 987 (2013)

    Article  Google Scholar 

  23. P. van Liedekerke, J. Neitsch, T. Johann, E. Warmt, I. Gonzàlez-Valverde, S. Hoehme, S. Grosser, J. Kaes, D. Drasdo, Biomech. Model Mechanobiol. 19, 189 (2020)

    Article  Google Scholar 

  24. A. Torres-Sánchez, M. Kerr Winter, and G. Salbreux, PLoS Comput. Biol. 18, e1010762 (2022).

  25. H. Turlier, B. Audoly, J. Prost, J.-F. Joanny, Biophys. J. 106, 114 (2014)

    Article  ADS  Google Scholar 

  26. H.B. da Rocha, J. Bleyer, H. Turlier, J. Mech. Phys. Solids 164, 104876 (2022)

    Article  Google Scholar 

  27. A. Mietke, F. Jülicher, I.F. Sbalzarini, Proc. Natl. Acad. Sci. 116, 29 (2019)

    Article  ADS  Google Scholar 

  28. A. Torres-Sánchez, D. Millán, M. Arroyo, J. Fluid. Mech. 872, 218 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Okuda, K. Sato, T. Hiraiwa, Eur. Phys. J. E 45, 69 (2022)

    Article  Google Scholar 

  30. S. Okuda, T. Hiraiwa, Phys. Rev. E 107, 034406 (2023)

    Article  ADS  Google Scholar 

  31. M. Belkin, J. Sun, and Y. Wang, in Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry (2008), pp. 278–287.

  32. S. Okuda, Y. Inoue, M. Eiraku, T. Adachi, Y. Sasai, Biomech. Model Mechanobiol. 14, 413 (2015)

    Article  Google Scholar 

  33. B. Majhy, P. Priyadarshini, A.K. Sen, RSC Adv. 11, 15467 (2021)

    Article  ADS  Google Scholar 

  34. G. Salbreux, G. Charras, E. Paluch, Trends Cell. Biol. 22, 536 (2012)

    Article  Google Scholar 

  35. E. Fischer-Friedrich, A.A. Hyman, F. Jülicher, D.J. Müller, J. Helenius, Sci. Rep. 4, 1 (2014)

    Article  Google Scholar 

  36. B. Smeets, M. Cuvelier, J. Pešek, H. Ramon, Biophys. J. 116, 930 (2019)

    Article  ADS  Google Scholar 

  37. M. Fritzsche, A. Lewalle, T. Duke, K. Kruse, G. Charras, Mol. Biol. Cell. 24, 757 (2013)

    Article  Google Scholar 

  38. S. Mukhina, Y. Wang, M. Murata-Hori, Dev. Cell. 13, 554 (2007)

    Article  Google Scholar 

  39. A.-C. Reymann, F. Staniscia, A. Erzberger, G. Salbreux, S.W. Grill, Elife 5, e17807 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Hervé Turlier of the Collège de France for his insightful discussions and suggestions. This work was supported by the Japan Science and Technology Agency (JST), CREST Grant No. JPMJCR1921; the Japan Agency for Medical Research and Development (AMED), Grant No. 21bm0704065h0002; the Japan Society for the Promotion of Science (JSPS), KAKENHI Grants No. 21H01209, 21KK0134, 22K18749, and 22H05170; the World Premier International Research Center Initiative, Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (to SO); and the seed grant of Mechanobiology Institute (to TH).

Author information

Authors and Affiliations

Authors

Contributions

SO conceived the project, developed the software, and performed the analyses; TH provided ideas; SO wrote the first draft of the manuscript, and SO and TH reviewed and edited. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Satoru Okuda.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 Video 1. Process of cell growth, contractile ring formation, and division to daughter cells The amplitude of contractile stress is colored with a slope from green to red. The snapshots of this process are shown in Fig. 5.

Supplementary file 2 Video 2. Effects of isotropic stress of contractile ring on cleavage furrow formation The amplitude of contractile stress is colored with a slope from green to red. The snapshots of this process are shown in Fig. 7.

Supplementary file 3 Video 3. Process of tissue growth by successive cell proliferation on substrate Individual cells are shown in different colors. The snapshots of this process are shown in Fig. 9a.

Supplementary file 4 Video 4. Top-view of tissue growth process by successive cell proliferations on substrate. The amplitude of contractile stress is colored with a slope from green to red. The snapshots of this process are shown in Fig. 9b.

Supplementary file 5 Video 5. Proliferation process of a single cell embedded in growing tissue. The amplitude of contractile stress is colored with a slope from green to red. The snapshots of this process are shown in Fig. 9d.

Appendix 1. Energy function for inducing anisotropic stress on triangular surface

Appendix 1. Energy function for inducing anisotropic stress on triangular surface

Anisotropic stress exerted on an arbitrary triangle in the \({{xyz}}\)-orthogonal coordinates is considered. The triangle is composed of vertices 0, 1, and 2 (Fig. 11). Normal vector of the triangle is represented by \({\varvec{n}}\) in the \({{xyz}}\)-orthogonal coordinates. In addition, the \(x^{\prime}y^{\prime}\) orthogonal coordinates can be locally defined in the plane of the triangle, whose basis vectors are represented by \({\varvec{e}}_{{x^{\prime}}}\) and \({\varvec{e}}_{{y^{\prime}}}\) (\(= {\varvec{n}} \times {\varvec{e}}_{{x^{\prime}}}\)). Using \({\varvec{e}}_{{x^{\prime}}}\) and \({\varvec{e}}_{{y^{\prime}}}\), the area of the triangle, represented by \(A\), is given by

$$ A = \frac{1}{2}\left( {\left( {{\varvec{d}}_{01} \cdot {\varvec{e}}_{{x^{\prime}}} } \right)\left( {{\varvec{d}}_{20} \cdot {\varvec{e}}_{{y^{\prime}}} } \right) - \left( {{\varvec{d}}_{20} \cdot {\varvec{e}}_{{x^{\prime}}} } \right)\left( {{\varvec{d}}_{01} \cdot {\varvec{e}}_{{y^{\prime}}} } \right)} \right), $$
(A1)

where \({\varvec{d}}_{\alpha \beta }\) is the distance vector from the \(\alpha\)- to \(\beta\)- vertices.

Fig. 11
figure 11

Description of anisotropic stress on a triangular element. Anisotropic stress acting on a triangle is expressed as a set of forces applied to vertices in two mutually orthogonal directions

To introduce the anisotropic stress on the membrane, we redefine the area of the triangle as a function dependent on direction. This is represented by \(A_{{x^{\prime}}}\) and \(A_{{y^{\prime}}}\), where \({\varvec{\alpha}}\) is a directional vector. Both \(A_{{x^{\prime}}}\) and \(A_{{y^{\prime}}}\) have the same value as \(A\). The partial derivatives of \(A_{{x^{\prime}}}\) and \(A_{{y^{\prime}}}\) with respect to the displacement of a vertex, denoted by \(dA_{{x^{\prime}}}\) and \(dA_{{y^{\prime}}}\), respectively, correspond to the changes in area when the displacement has only \(x^{\prime}\) and \(y^{\prime}\) components. By regarding the components of vertex locations along \({\varvec{e}}_{{y^{\prime}}}\) as constants in Eq. (A1), Eq. (A1) is rewritten as follows

$$ \begin{gathered} A_{{x^{\prime}}} = \frac{1}{2}\left( {c_{{y^{\prime}1}} \left( {{\varvec{d}}_{01} \cdot {\varvec{e}}_{{x^{\prime}}} } \right) - c_{{y^{\prime}2}} \left( {{\varvec{d}}_{20} \cdot {\varvec{e}}_{{x^{\prime}}} } \right)} \right), \hfill \\ c_{{y^{\prime}1}} = {\varvec{d}}_{20} \cdot {\varvec{e}}_{{y^{\prime}}} ,\hfill \\ c_{{x^{\prime}2}} = {\varvec{d}}_{20} \cdot {\varvec{e}}_{{x^{\prime}}} , \hfill \\ \end{gathered} $$
(A2)

where \(c_{{y^{\prime}1}}\) and \( c_{{y^{\prime}2}}\) are regarded as constants. Similarly, by regarding the components of vertex locations along \({\varvec{e}}_{{x^{\prime}}}\) as constants in (A2), Eq. (A1) is given by

$$ \begin{gathered} A_{{y^{\prime}}} = \frac{1}{2}\left( {c_{{x^{\prime}1}} \left( {{\varvec{d}}_{20} \cdot {\varvec{e}}_{{y^{\prime}}} } \right) - c_{{x^{\prime}2}} \left( {{\varvec{d}}_{01} \cdot {\varvec{e}}_{{y^{\prime}}} } \right)} \right), \hfill \\ c_{{x^{\prime}1}} = {\varvec{d}}_{01} \cdot {\varvec{e}}_{{x^{\prime}}} , \hfill \\ c_{{x^{\prime}1}} = {\varvec{d}}_{20} \cdot {\varvec{e}}_{{x^{\prime}}}, \hfill \\ \end{gathered} $$
(A3)

where \(c_{{x^{\prime}1}}\) and \( c_{{x^{\prime}2}}\) are regarded as constants.

Using Eqs. (A2) and (A3), the energy of anisotropic stress in the triangle surface, represented by \(u\), can be given by

$$ u \equiv \sigma_{{x^{\prime}}} A_{{x^{\prime}}} + \sigma_{{y^{\prime}}} A_{{y^{\prime}}} , $$
(A4)

where the constants \(\sigma_{{x^{\prime}}}\) and \(\sigma_{{y^{\prime}}}\) are the exerted stress along \({\varvec{e}}_{{x^{\prime}}}\) and \({\varvec{e}}_{{y^{\prime}}}\), respectively. When the exerted tension is isotropic (\(\sigma_{{x^{\prime}}} = \sigma_{{y^{\prime}}} = \sigma /2\)), the energy function becomes \(u = \sigma A\).

By calculating the partial derivatives of Eq. (A4), the forces acting on vertices 0, 1, and 2, represented by \({\varvec{f}}_{0}\), \({\varvec{f}}_{1}\), and \({\varvec{f}}_{2}\), respectively, were given by

$$ \begin{gathered} f_{0} = - \frac{1}{2}\sigma_{{x^{\prime}}} \left( {d_{12} \cdot e_{{y^{\prime}}} } \right)e_{{x^{\prime}}} - \frac{1}{2}\sigma_{{y^{\prime}}} \left( {d_{12} \cdot e_{{x^{\prime}}} } \right)e_{{y^{\prime}}} , \hfill \\ f_{1} = - \frac{1}{2}\sigma_{{x^{\prime}}} \left( {d_{20} \cdot e_{{y^{\prime}}} } \right)e_{{x^{\prime}}} - \frac{1}{2}\sigma_{{y^{\prime}}} \left( {d_{20} \cdot e_{{x^{\prime}}} } \right)e_{{y^{\prime}}} , \hfill \\ f_{2} = - \frac{1}{2}\sigma_{{x^{\prime}}} \left( {d_{01} \cdot e_{{y^{\prime}}} } \right)e_{{x^{\prime}}} - \frac{1}{2}\sigma_{{y^{\prime}}} \left( {d_{01} \cdot e_{{x^{\prime}}} } \right)e_{{y^{\prime}}} , \hfill \\ \end{gathered} $$
(A5)

respectively. The sum of each of the forces and moments in Eq. (A5) becomes zero. According to the above formulation, the area of the jth triangle in the ith cell is rewritten as a direction-dependent function, where the components of vertex position vectors in the direction normal to \({\varvec{\alpha}}\) is regarded as constants, \(A_{j\left( i \right)}^{\parallel } \left( {\varvec{\alpha}} \right)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuda, S., Hiraiwa, T. Modelling contractile ring formation and division to daughter cells for simulating proliferative multicellular dynamics. Eur. Phys. J. E 46, 56 (2023). https://doi.org/10.1140/epje/s10189-023-00315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00315-5

Navigation