Skip to main content
Log in

Multi-type Galton–Watson Processes with Affinity-Dependent Selection Applied to Antibody Affinity Maturation

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze the interactions between division, mutation and selection in a simplified evolutionary model, assuming that the population observed can be classified into fitness levels. The construction of our mathematical framework is motivated by the modeling of antibody affinity maturation of B-cells in germinal centers during an immune response. This is a key process in adaptive immunity leading to the production of high-affinity antibodies against a presented antigen. Our aim is to understand how the different biological parameters affect the system’s functionality. We identify the existence of an optimal value of the selection rate, able to maximize the number of selected B-cells for a given generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson SM, Khalil A, Uduman M, Hershberg U, Louzoun Y, Haberman AM, Kleinstein SH, Shlomchik MJ (2009) Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. J Immunol 183(11):7314–7325

    Article  Google Scholar 

  • Ansari HR, Raghava GP (2010) Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immunome Res 6(1):1

    Article  Google Scholar 

  • Athreya KB, Ney PE (2012) Branching processes, vol 196. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Balelli I, Milišić V, Wainrib G (2018) Random walks on binary strings applied to the somatic hypermutation of B-cells. Math Biosci 300:168–186

    Article  MathSciNet  MATH  Google Scholar 

  • Balelli I, Milisic V, Wainrib G (2016) Branching random walks on binary strings for evolutionary processes in adaptive immunity. arXiv preprint arXiv:1607.00927

  • Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG (2013) Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39(5):912–924

    Article  Google Scholar 

  • Castro LND, Zuben FJV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251

    Article  Google Scholar 

  • Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352(8):804–815

    Article  Google Scholar 

  • Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44(5):1172–1239

    Article  Google Scholar 

  • De Silva NS, Klein U (2015) Dynamics of B cells in germinal centres. Nat Rev Immunol 15(3):137–148

    Article  Google Scholar 

  • Dighiero G, Hamblin T (2008) Chronic lymphocytic leukaemia. Lancet 371(9617):1017–1029

    Article  Google Scholar 

  • Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, Buske C (2015) Chronic lymphocytic leukaemia: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26((suppl 5)):v78–v84

    Article  Google Scholar 

  • Gitlin AD, Shulman Z, Nussenzweig MC (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509(7502):637–640

    Article  Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springer, New York

    Book  MATH  Google Scholar 

  • Iber D, Maini PK (2002) A mathematical model for germinal centre kinetics and affinity maturation. J Theoret Biol 219(2):153–175

    Article  MathSciNet  Google Scholar 

  • Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T (2018) Generation of memory B cells and their reactivation. Immunol Rev 283(1):138–149

    Article  Google Scholar 

  • Kauffman SA, Weinberger ED (1989) The NK model of rugged fitness landscapes and its application to maturation of the immune response. J Theoret Biol 141(2):211–245

    Article  Google Scholar 

  • Keşmir C, De Boer RJ (1999) A mathematical model on germinal center kinetics and termination. J Immunol 163(5):2463–2469

    Google Scholar 

  • Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829

    Article  Google Scholar 

  • MacLennan IC, de Vinuesa CG, Casamayor-Palleja M (2000) B-cell memory and the persistence of antibody responses. Philos Trans R Soc Lond B Biol Sci 355(1395):345–350

    Article  Google Scholar 

  • Meyer-Hermann ME, Maini PK, Iber D (2006) An analysis of B cell selection mechanisms in germinal centers. Math Med Biol 23(3):255–277

    Article  MATH  Google Scholar 

  • Meyer-Hermann M, Mohr E, Pelletier N, Zhang Y, Victora GD, Toellner KM (2012) A theory of germinal center B cell selection, division, and exit. Cell Rep 2(1):162–174

    Article  Google Scholar 

  • Minc H (1988) Nonnegative matrices. John Wiley & Sons, New York

  • Mitchell R, Kelly DF, Pollard AJ, Trück J (2014) Polysaccharide-specific B cell responses to vaccination in humans. Hum Vaccines Immunother 10(6):1661–1668

    Article  Google Scholar 

  • Moreira JS, Faro J (2006) Modelling two possible mechanisms for the regulation of the germinal center dynamics. J Immunol 177(6):3705–3710

    Article  Google Scholar 

  • Murphy KM, Travers P, Walport M et al (2012) Janeway’s immunobiology, vol 7. Garland Science, New York

    Google Scholar 

  • Pang W, Wang K, Wang Y, Ou G, Li H, Huang L (2015) Clonal selection algorithm for solving permutation optimisation problems: a case study of travelling salesman problem. In: International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015). Atlantis Press

  • Perelson AS, Oster GF (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol 81(4):645–670

    Article  MathSciNet  Google Scholar 

  • Perelson AS, Weisbuch G (1997) Immunology for physicists. Rev Mod Phys 69(4):1219–1267

    Article  Google Scholar 

  • Phan TG, Paus D, Chan TD, Turner ML, Nutt SL, Basten A, Brink R (2006) High affinity germinal center B cells are actively selected into the plasma cell compartment. J Exp Med 203(11):2419–2424

    Article  Google Scholar 

  • Shannon M, Mehr R (1999) Reconciling repertoire shift with affinity maturation: the role of deleterious mutations. J Immunol 162(7):3950–3956

    Google Scholar 

  • Shen WJ, Wong HS, Xiao QW, Guo X, Smale S (2012) Towards a mathematical foundation of immunology and amino acid chains. arXiv preprint arXiv:1205.6031

  • Shlomchik MJ, Watts P, Weigert MG, Litwin S (1998) Clone: a Monte-Carlo computer simulation of B cell clonal expansion, somatic mutation, and antigen-driven selection. In: Kelsoe G, Flajnik MF (eds) Somatic diversification of immune responses. Springer, Berlin, Heidelberg, pp 173–197

    Chapter  Google Scholar 

  • Tas JM, Mesin L, Pasqual G, Targ S, Jacobsen JT, Mano YM, Chen CS, Weill JC, Reynaud CA, Browne EP et al (2016) Visualizing antibody affinity maturation in germinal centers. Science 351(6277):1048–1054

    Article  Google Scholar 

  • Timmis J, Hone A, Stibor T, Clark E (2008) Theoretical advances in artificial immune systems. Theor Comput Sci 403(1):11–32

    Article  MathSciNet  MATH  Google Scholar 

  • Victora GD (2014) Snapshot: the germinal center reaction. Cell 159(3):700–700

    Article  Google Scholar 

  • Victora GD, Mesin L (2014) Clonal and cellular dynamics in germinal centers. Curr Opin Immunol 28:90–96

    Article  Google Scholar 

  • Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457

    Article  Google Scholar 

  • Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143(4):592–605

    Article  Google Scholar 

  • Wang P, Shih CM, Qi H, Lan YH (2016) A stochastic model of the germinal center integrating local antigen competition, individualistic T-B interactions, and B cell receptor signaling. J Immunol 197:1169–1182

    Article  Google Scholar 

  • Weiser AA, Wittenbrink N, Zhang L, Schmelzer AI, Valai A, Or-Guil M (2011) Affinity maturation of B cells involves not only a few but a whole spectrum of relevant mutations. Int Immunol 23(5):345–356

    Article  Google Scholar 

  • Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG, Faro J, Graca L (2011) Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol 187(9):4553–4560

    Article  Google Scholar 

  • Xu H, Schmidt AG, O’Donnell T, Therkelsen MD, Kepler TB, Moody MA, Haynes BF, Liao HX, Harrison SC, Shaw DE (2015) Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins Struct Funct Bioinf 83(4):771–780

    Article  Google Scholar 

  • Yaari G, Uduman M, Kleinstein SH (2012) Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res 40(17):e134–e134

    Article  Google Scholar 

  • Zhang J, Shakhnovich ET (2010) Optimality of mutation and selection in germinal centers. PLoS Comput Biol 6(6):e1000800

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Labex inflamex, ANR Project 10-LABX-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Balelli.

Appendices

Appendix

Appendix A: Few Reminders of Classical Results on GW Processes

We recall here some classical results about GW processes we employed to derive Proposition 1 (Sect. 3.1). For further details, the reader can refer to Harris (1963).

Definition 14

Let X be an integer valued rv, \(p_k:={\mathbb {P}}(X=k)\) for all \(k\ge 0\). Its probability generating function (pgf) is given by:

$$\begin{aligned} F_X(s)=\sum _{k=0}^{+\infty } p_k s^k \end{aligned}$$

\(F_X\) is a convex monotonically increasing function over [0, 1], and \(F_X(1)=1\). If \(p_0\ne 0\) and \(p_0+p_1<1\) then F is a strictly increasing function.

Definition 15

Given F, the pgf of a rv X, the iterates of F are given by:

$$\begin{aligned} F_0(s)= & {} s \\ F_1(s)= & {} F(s) \\ F_t(s)= & {} F(F_{t-1}(s))\text { for }t\ge 2 \end{aligned}$$

Proposition 11

  1. (i)

    If \({\mathbb {E}}(X)\) exists (respectively \({\mathbb {V}}(X)\)), then \({\mathbb {E}}(X)=F'_X(1)\) (respectively \({\mathbb {V}}(X)=F''_X(1)-\left( {\mathbb {E}}(X)\right) ^2+{\mathbb {E}}(X)\)).

  2. (ii)

    If X and Y are two integer valued independent rvs, then \(X+Y\) is still an integer valued rv and its pgf is given by \(F_{X+Y}=F_XF_Y\).

Definition 16

We denote by \(\eta \) the extinction probability of the process \((Z_t)_{t\in {\mathbb {N}}}\):

$$\begin{aligned} \eta :=\lim _{t\rightarrow \infty }F_t(0) \end{aligned}$$

Theorem 2

  1. (i)

    The pgf of \(Z_t^{(z_0)}\), \(t\;\in \;{\mathbb {N}}\), which represents the population size of the tth-generation starting from \(z_0\ge 1\) seed cells, is \(F_t^{(z_0)}=(F_t)^{z_0}\), \(F_t\) being the tth-iterate of F (Eq. (2)).

  2. (ii)

    The expected size of the GC at time t and starting from \(z_0\) B-cells is given by:

    $$\begin{aligned} {\mathbb {E}}(Z_t^{(z_0)})=z_0\left( {\mathbb {E}}(Z_t)\right) =z_0\left( {\mathbb {E}}(Z_1)\right) ^t~, \end{aligned}$$
    (13)
  3. (iii)

    \(\eta \) is the smallest fixed point of the generating function F, i.e., \(\eta \) is the smallest s s.t. \(F(s)=s\).

  4. (iv)

    If \({\mathbb {E}}(Z_1)=:m\) is finite, then:

    • if \(m\le 1\) then F has only 1 as fixed point and consequently \(\eta =1\);

    • if \(m>1\) then F as exactly a fixed point on [0, 1[ and then \(\eta <1\).

  5. (v)

    Denoted by \(\eta _{z_0}\) the probability of extinction of \((Z_t^{(z_0)})\), one has:

    $$\begin{aligned} \eta _{z_0}=\eta ^{z_0} \end{aligned}$$

    where \(\eta \) is given by (iii).

Proposition 1 of Sect. 3.1 follows by applying Theorem 2 and Eq. (1).

Appendix B: Proof of Proposition 2

For all \(j\in \{0,\dots ,N+2\}\) the generating function of \(Z_j\) gives the number of offspring of each type that a type j particle can produce. It is defined as follows:

$$\begin{aligned} f^{(j)}(s_0,\ldots ,s_{N+2})=\sum _{k_0,\ldots ,k_{N+2}\ge 0}p^{(j)}(k_0,\ldots ,k_{N+2})s_0^{k_0}\ldots s_{N+2}^{k_{N+2}}, \end{aligned}$$
(14)
$$\begin{aligned} 0\le s_{\alpha }\le 1\text { for all }\alpha \in \{0,\dots ,N+2\} \end{aligned}$$

where \(p^{(j)}(k_0,\dots ,k_{N+2})\) is the probability that a type j cell produces \(k_0\) cells of type 0, \(k_1\) of type 1, \(\dots \), \(k_{N+2}\) of type \(N+2\) for the next generation.

We denote:

  • \({\mathbf {p}}({\mathbf {k}})=(p^{(0)}({\mathbf {k}}),\dots ,p^{(N+2)}({\mathbf {k}}))\), for \({\mathbf {k}}=(k_0,\dots ,k_{N+2}) \,\in \,{\mathbb {Z}}_+^{N+3}\)

  • \({\mathbf {f}}({\mathbf {s}})=(f^{(1)}({\mathbf {s}}),\dots ,f^{(N+1)}({\mathbf {s}}))\), for \({\mathbf {s}}=(s_0,\dots ,s_{N+2})\,\in \,{\mathcal {C}}^{N+3}:=[0,1]^{N+3}\)

Then the probability generating function of \({\mathbf {Z}}_1\) is given by:

$$\begin{aligned} {\mathbf {f}}({\mathbf {s}})=\displaystyle \sum _{{\mathbf {k}} \in {\mathbb {Z}}_+^{N+3}}{\mathbf {p}}({\mathbf {k}}){\mathbf {s}}^{{\mathbf {k}}} {,{\mathbf {s}}\,\in \,{\mathcal {C}}^{N+3}} \end{aligned}$$
(15)

Again, the generating function of \({\mathbf {Z}}_t\), \({\mathbf {f}}_t({\mathbf {s}})\), is obtained as the tth-iterate of \({\mathbf {f}}\), and it holds true that:

$$\begin{aligned} {\mathbf {f}}_{t+r}({\mathbf {s}})={\mathbf {f}}_t[{\mathbf {f}}_r({\mathbf {s}})]{, {\mathbf {s}}\,\in \,{\mathcal {C}}^{N+3}.} \end{aligned}$$

Let \(m_{ij}:={\mathbb {E}}[Z_{1,j}^{(i)}]\) the expected number of offspring of type j of a cell of type i in one generation. We collect all \(m_{ij}\) in a matrix, \({\mathcal {M}}=(m_{ij})_{0\le i,j\le N+2}\). We have Athreya and Ney (2012):

$$\begin{aligned} m_{ij}=\frac{\partial f^{(i)}}{\partial s_j}({\varvec{1}}) \end{aligned}$$

and:

$$\begin{aligned} {\mathbb {E}}[Z_{t,j}^{(i)}]=\frac{\partial f_t^{(i)}}{\partial s_j}({\varvec{1}}) \end{aligned}$$
(16)

Finally:

$$\begin{aligned} {\mathbb {E}}[{\mathbf {Z}}_t^{({\mathbf {i}})}]={\mathbf {i}}{\mathcal {M}}^t \end{aligned}$$
(17)

One can explicitly derive the elements of matrix \({\mathcal {M}}\) for the process described in Definition 13.

Proposition

\({\mathcal {M}}\) is a \((N+3)\times (N+3)\) matrix defined as a block matrix:

$$\begin{aligned} {\mathcal {M}}=\left( \begin{array}{cc} {\mathcal {M}}_1 &{}\quad {\mathcal {M}}_2 \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) \end{aligned}$$

where

  • \({\varvec{0}}_{2\times (N+1)}\) is a \(2\times (N+1)\) matrix with all entries 0;

  • \({\mathcal {I}}_n\) is the identity matrix of size n;

  • \({\mathcal {M}}_1=2(1-r_d)r_\mathrm{div}(1-r_s){\mathcal {Q}}_N+(1-r_d)(1-r_\mathrm{div})(1-r_s){\mathcal {I}}_{N+1}\)

  • \({\mathcal {M}}_2=(m_{2,ij})\) is a \((N+1)\times 2\) matrix where for all \(i\in \{0,\dots ,N\}\):

    • if \(i\le {\overline{a}}_s\):

      \(m_{2,i1}=(1-r_d)(1-r_\mathrm{div})r_s+2(1-r_d)r_\mathrm{div}r_s\sum _{j=0}^{{\overline{a}}_s}q_{ij}\),

      \(m_{2,i2}=r_d+2(1-r_d)r_\mathrm{div}r_s\sum _{j={\overline{a}}_s+1}^{N}q_{ij}\)

    • if \(i>{\overline{a}}_s\):

      \(m_{2,i1}=2(1-r_d)r_\mathrm{div}r_s\sum _{j=0}^{{\overline{a}}_s}q_{ij}\),

      \(m_{2,i2}=r_d+(1-r_d)(1-r_\mathrm{div})r_s+2(1-r_d)r_\mathrm{div}r_s \sum _{j={\overline{a}}_s+1}^{N}q_{ij}\)

Proof

One has to compute all \(f^{(i)}({\mathbf {s}})\) for \(i=0,\dots , N+2\), which depend on \(r_d\), \(r_\mathrm{div}\), \(r_s\), \({\overline{a}}_s\) and the elements of \({\mathcal {Q}}_N\). First, the elements of the \((N+2)\)th and \((N+3)\)th-lines are obviously determined: all selected (resp. dead) cells remain selected (resp. dead) for next generations, as they cannot give rise to any other cell type offspring (we do not take into account here any type of recycling mechanism). Let \(i\in \{0,\dots ,N\}\) be a fixed index: we evaluate \(m_{ij}\) for all \(j\in \{0,\dots ,N+2\}\). The first step is to determine the value of \(p^{(i)}({\mathbf {k}})\) for \({\mathbf {k}}=(k_0,\dots ,k_{N+2}) \,\in \,{\mathbb {Z}}_+^{N+3}\). There exists only a few cases in which \(p^{(i)}({\mathbf {k}})\ne 0\), which can be explicitly evaluated:

  • \(p^{(i)}(0,\dots ,0,1)={\left\{ \begin{array}{ll} r_d &{}\quad \text {if}\; i \le {\overline{a}}_s \\ r_d+(1-r_d)(1-r_\mathrm{div})r_s &{}\quad \text {otherwise} \end{array}\right. }\)

  • \(p^{(i)}(0,\dots ,0,1,0)={\left\{ \begin{array}{ll} (1-r_d)(1-r_\mathrm{div})r_s &{}\quad \text {if}\; i \le {\overline{a}}_s \\ 0 &{}\quad \text {otherwise} \end{array}\right. }\)

  • \(p^{(i)}(0,\dots ,0,\underset{{i}}{1},0,\dots ,0,0)=(1-r_d)(1-r_\mathrm{div})(1-r_s)\)

  • \(p^{(i)}(0,\dots ,0,2)=(1-r_d)r_\mathrm{div}r_s^2\sum _{j_1={\overline{a}}_s+1}^N q_{ij_1}\sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}\)

  • \(p^{(i)}(0,\dots ,0,2,0)=(1-r_d)r_\mathrm{div}r_s^2\sum _{j_1=0}^{{\overline{a}}_s} q_{ij_1}\sum _{j_2=0}^{{\overline{a}}_s} q_{ij_2}\)

  • \(p^{(i)}(0,\dots ,0,1,1)=2(1-r_d)r_\mathrm{div}r_s^2\sum _{j_1=0}^{{\overline{a}}_s} q_{ij_1}\sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}\)

  • For all \(j_1<j_2\in \{0,\dots ,N\}\):

    • \(p^{(i)}(0,\dots ,0,\underset{{j_1}}{2},0,\dots ,0,0)=(1-r_d)r_\mathrm{div}(1-r_s)^2q_{ij_1}^2\)

    • \(p^{(i)}(0,\dots ,0,\underset{{j_1}}{1},0,\dots ,0,\underset{{j_2}}{1},0,\dots ,0,0)=2(1-r_d)r_\mathrm{div}(1-r_s)^2q_{ij_1}q_{ij_2}\)

    • \(p^{(i)}(0,\dots ,0,\underset{{j_1}}{1},0,\dots ,0,1)=2(1-r_d)r_\mathrm{div}r_s(1-r_s)q_{ij_1}\sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}\)

    • \(p^{(i)}(0,\dots ,0,\underset{{j_1}}{1},0,\dots ,0,1,0)=2(1-r_d)r_\mathrm{div}r_s(1-r_s)q_{ij_1}\sum _{j_2=0}^{{\overline{a}}_s} q_{ij_2}\)

  • \(p^{(i)}({\mathbf {k}})=0\) otherwise

We can therefore evaluate \(f^{(i)}({\mathbf {s}})\), with \({\mathbf {s}}=(s_0,\dots ,s_{N+2})\in {\mathcal {C}}^{N+3}\).

For all \(i\le {\overline{a}}_s\):

$$\begin{aligned} \begin{aligned} f^{(i)} ({\mathbf {s}})&= r_ds_{N+2}+(1-r_d)(1-r_\mathrm{div})r_ss_{N+1} + (1-r_d)(1-r_\mathrm{div})(1-r_s)s_i \\&\quad + (1-r_d)r_\mathrm{div}r_s^2\left( \sum _{j_1={\overline{a}}_s+1}^N q_{ij_1}\sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}s_{N+2}^2\right. \\&\quad \left. +\sum _{j_1=0}^{{\overline{a}}_s} q_{ij_1}\sum _{j_2=0}^{{\overline{a}}_s} q_{ij_2}s_{N+1}^2+2\sum _{j_1=0}^{{\overline{a}}_s} q_{ij_1}\sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}s_{N+1}s_{N+2}\right) \\&\quad + (1-r_d)r_\mathrm{div}(1-r_s)^2\left( \sum _{j_1=0}^{N}q_{ij_1}^2s_{j_1}^2+2\sum _{j_1=0}^{N}q_{ij_1}\sum _{j_2< j_1=0}^N q_{ij_2}s_{j_1}s_{j_2}\right) \\&\quad + 2(1-r_d)r_\mathrm{div}r_s(1-r_s)\sum _{j_1=0}^{N}q_{ij_1}\left( \displaystyle \sum _{j_2={\overline{a}}_s+1}^N q_{ij_2}s_{N+2}+\sum _{j_2=0}^{{\overline{a}}_s} q_{ij_2}s_{N+1}\right) s_{j_1} \end{aligned} \end{aligned}$$
(18)

If \(i>{\overline{a}}_s\) then \(f^{(i)}({\mathbf {s}})\) is the same except for the first line, which becomes:

$$\begin{aligned} (r_d+(1-r_d)(1-r_\mathrm{div})r_s)s_{N+2} + (1-r_d)(1-r_\mathrm{div})(1-r_s)s_i \end{aligned}$$

The values of each \(m_{ij}\) are now obtained by evaluating all partial derivatives of \(f^{(i)}({\mathbf {s}})\) in \({\varvec{1}}\), keeping in mind that for all \(i\;\in \;\{0,\dots ,N\}\), \(\sum _{j=0}^N q_{ij}=1\). \(\square \)

Appendix C: Deriving the Extinction Probability of the GC from the Multi-type GW Process (Sect. 3.2)

Let us recall some results about the extinction probability for multi-type GW processes (Athreya and Ney 2012).

Definition 17

Let \(q^{(i)}\) be the probability of eventual extinction of the process, when it starts from a single type i cell. As above bold symbols denote vectors, i.e., \({\mathbf {q}} :=(q^{(0)},\dots ,q^{(N+2)})\ge 0\).

Definition 18

We say that \(({\mathbf {Z}}_t)\) is singular if each particle has exactly one offspring, which implies that the branching process becomes a simple MC.

Definition 19

Matrix \({\mathcal {M}}\) is said to be strictly positive if it has nonnegative entries and there exists a t s.t. \(\left( {\mathcal {M}}^t\right) _{ij}>0\) for all i, j. \(({\mathbf {Z}}_t)\) is called positive regular iff \({\mathcal {M}}\) is strictly positive.

Notation 1

Let \({\mathbf {u}}\), \({\mathbf {v}}\;\in \;{\mathbb {R}}^n\). We say that \({\mathbf {u}}\le {\mathbf {v}}\) if \(u_i\le v_i\) for all \(i\;\in \,\{1,\dots ,n\}\). Moreover, we say that \({\mathbf {u}}< {\mathbf {v}}\) if \({\mathbf {u}}\le {\mathbf {v}}\) and \({\mathbf {u}}\ne {\mathbf {v}}\).

Theorem 3

Let \(({\mathbf {Z}}_t)\) be non-singular and strictly positive. Let \(\rho \) be the maximal eigenvalue of \({\mathcal {M}}\). The following three results hold:

  1. 1.

    If \(\rho <1\) (subcritical case) or \(\rho =1\) (critical case) then \({\mathbf {q}}={\varvec{1}}\). Otherwise, if \(\rho >1\) (supercritical case), then \({\mathbf {q}}<{\varvec{1}}\).

  2. 2.

    \(\displaystyle \lim _{t\rightarrow \infty }{\mathbf {f}}_t({\mathbf {s}})={\mathbf {q}}\), for all \({\mathbf {s}}\,\in \,{\mathcal {C}}^{N+3}\).

  3. 3.

    \({\mathbf {q}}\) is the only solution of \({\mathbf {f}}({\mathbf {s}})={\mathbf {s}}\) in \({\mathcal {C}}^{N+3}\).

The spectrum of matrix \({\mathcal {M}}\) defined in Definition 2 (and recalled in “Appendix B”) is obtained as follows:

Proposition 12

Let \({\mathcal {M}}\) be defined as a block matrix as in Proposition 2. Let \(\lambda _{{\mathcal {M}},i}\) be its ith-eigenvalue. The spectrum of \({\mathcal {M}}\) is given by:

  • For all \(i\in \{0,\dots ,N\}\), \(\lambda _{{\mathcal {M}},i}=(1-r_d)(1-r_s)(1+r_\mathrm{div}(2\lambda _{i}-1))\), where \(\lambda _{i}\) is the ith-eigenvalue of matrix \({\mathcal {Q}}_N\).

  • whereas \(\lambda _{{\mathcal {M}},N+1}=1\) with multiplicity 2.

Proof

As \({\mathcal {M}}\) is a block matrix with the lower left block composed of zeros, then \(Spec({\mathcal {M}})=Spec({\mathcal {M}}_1)\cup Spec({\mathcal {I}}_{2})\). The result follows. \(\square \)

Therefore we obtain the same condition as in Proposition 1 for the extinction probability in the GC:

Proposition 13

Let \({\mathbf {q}}\) be the extinction probability for the process \(({\mathbf {Z}}_t)\) defined in Definition 13 and restricted to the first \(N+1\) components (i.e., we refer only to matrix \({\mathcal {M}}_1\), which defines the expectations of GC B-cells). Therefore:

  • if \(r_s\ge 1-\displaystyle \frac{1}{(1-r_d)(1+r_\mathrm{div})}\), then \({\mathbf {q}}={\varvec{1}}\)

  • otherwise \({\mathbf {q}}<{\varvec{1}}\) is the smallest fixed point of \({\mathbf {f}}({\mathbf {s}})\) in \({\mathcal {C}}^{N+3}\).

Proof

\({\mathcal {Q}}_N\) is a stochastic matrix, therefore its largest eigenvalue is 1. The corresponding eigenvalue of matrix \({\mathcal {M}}_1\) is: \(\lambda _{{\mathcal {M}}_1,1}=(1-r_d)(1-r_s)(1+r_\mathrm{div})\). The proposition is proved by observing that \(\lambda _{{\mathcal {M}}_1,1}\le 1\Leftrightarrow r_s\ge 1-\frac{1}{(1-r_d)(1+r_\mathrm{div})}\) and applying Theorem 3 (note that \({\mathcal {M}}_1\) is positive regular: this is not the case for matrix \({\mathcal {M}}\)). \(\square \)

Appendix D: Expected Size of the GC Derived from the Multi-type GW Process (Sect. 3.2)

Proposition

Let \({\mathbf {i}}\) be the initial state, \(z_0:=|{\mathbf {i}}|\) its 1-norm (\(|{\mathbf {i}}|:=\sum _{j=0}^{N+2}{\mathbf {i}}_j\)). The expected size of the GC at time t:

$$\begin{aligned} \sum _{k=0}^N({\mathbf {i}}{\mathcal {M}}^t)_k=|{\mathbf {i}}|\left( (1-r_d)(1+r_\mathrm{div})(1-r_s)\right) ^{t} \end{aligned}$$

Proof

For the sake of simplicity, let us suppose that the process starts from a single B-cell belonging to the affinity class \(a_0=i\) with respect to the target trait. We do not need to specify the transition probability matrix used to define the mutational model allowed.

We recall the expression of \({\mathcal {M}}^t\) obtained by iteration:

$$\begin{aligned} {{\mathcal {M}}}^t=\left( \begin{array}{cc} {\mathcal {M}}_1^t &{}\quad \sum _{k=0}^{t-1}{\mathcal {M}}_1^k{\mathcal {M}}_2 \\ \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) \end{aligned}$$

Therefore we can claim that \(({\mathbf {i}}{\mathcal {M}}^t)_k\) corresponds to the kth-component of the ith-row of matrix \({\mathcal {M}}_1^t=(2(1-r_d)r_\mathrm{div}(1-r_s){\mathcal {Q}}_N+(1-r_d)(1-r_\mathrm{div})(1-r_s){\mathcal {I}}_{N+1})^t\), where \({\mathcal {Q}}_N\) is a stochastic matrix. Matrices \({\mathcal {A}}:=2(1-r_d)r_\mathrm{div}(1-r_s){\mathcal {Q}}_N\) and \({\mathcal {B}}:=(1-r_d)(1-r_\mathrm{div})(1-r_s){\mathcal {I}}_{N+1}\) clearly commute, therefore:

$$\begin{aligned} \left( {\mathcal {A}}+{\mathcal {B}}\right) ^t=\sum _{j=0}^tC_t^j{\mathcal {A}}^{t-j}{\mathcal {B}}^j \end{aligned}$$
(19)

For all j, \(0\le j\le t\):

$$\begin{aligned} {\mathcal {A}}^{t-j}{\mathcal {B}}^j= & {} 2^{t-j}(1-r_d)^{t-j}r_\mathrm{div}^{t-j}(1-r_s)^{t-j}(1-r_d)^j(1-r_\mathrm{div})^j(1-r_s)^j{\mathcal {Q}}_N^{t-j} \\= & {} (1-r_d)^t(1-r_s)^t(2r_\mathrm{div})^{t-j}(1-r_\mathrm{div})^j{\mathcal {Q}}_N^{t-j} \end{aligned}$$

Hence

$$\begin{aligned} \left( {\mathcal {A}}+{\mathcal {B}}\right) ^t=(1-r_d)^t(1-r_s)^t\sum _{j=0}^tC_t^j(2r_\mathrm{div})^{t-j}(1-r_\mathrm{div})^j{\mathcal {Q}}_N^{t-j} \end{aligned}$$

And consequently

$$\begin{aligned} \sum _{k=0}^N({\mathbf {i}}{\mathcal {M}}^t)_k= & {} \sum _{k=0}^N\left( {\mathbf {i}}\left( {\mathcal {A}}+{\mathcal {B}}\right) ^t\right) _k\\= & {} (1-r_d)^t(1-r_s)^t\sum _{j=0}^tC_t^j(2r_\mathrm{div})^{t-j}(1-r_\mathrm{div})^j\sum _{k=0}^N\left( {\mathbf {i}}{\mathcal {Q}}_N^{t-j}\right) _k \end{aligned}$$

Since \({\mathcal {Q}}_N\) is a stochastic matrix, for all n, \({\mathcal {Q}}_N^n\) is still a stochastic matrix, i.e., the entries of each row of \({\mathcal {Q}}_N^n\) sum to 1. Therefore:

$$\begin{aligned} \sum _{k=0}^N({\mathbf {i}}{\mathcal {M}}^t)_k= & {} (1-r_d)^t(1-r_s)^t\sum _{j=0}^tC_t^j(2r_\mathrm{div})^{t-j}(1-r_\mathrm{div})^j \\= & {} (1-r_d)^t(1-r_s)^t(2r_\mathrm{div}+1-r_\mathrm{div})^t = (1-r_d)^t(1-r_s)^t(1+r_\mathrm{div})^t~, \end{aligned}$$

as stated by Eq. (3) for \(z_0=1\). This result can be easily generalized to the case of \(z_0\ge 1\) initial B-cells. \(\square \)

Appendix E: Proof of Proposition 5

Proposition

Let us suppose that at time \(t=0\) there is a single B-cell entering the GC belonging to the ith-affinity class with respect to the target cell. Moreover, let us suppose that \({\mathcal {Q}}_N=R\varLambda _N L\). For all \(t\ge 1\), the expected number of selected B-cells at time t, is:

$$\begin{aligned} {\mathbb {E}}(S_t)=r_s(1-r_s)^{t-1}(1-r_d)^t\sum _{\ell =0}^N(2\lambda _{\ell }r_\mathrm{div}+1-r_\mathrm{div})^t \sum _{k=0}^{{\overline{a}}_s}r_{i\ell }l_{\ell k}~, \end{aligned}$$

Proof

Let us suppose, for the sake of simplicity, that \({\mathcal {Q}}_N\) is diagonalizable:

$$\begin{aligned} {\mathcal {Q}}_N=R\varLambda _N L~, \end{aligned}$$
(20)

We can prove by iteration that:

$$\begin{aligned} {{\mathcal {M}}}^t=\left( \begin{array}{cc} {\mathcal {M}}_1^t &{}\quad \sum _{k=0}^{t-1}{\mathcal {M}}_1^k{\mathcal {M}}_2 \\ \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) \end{aligned}$$
(21)

It follows from (20) and (21) that for all \(t\ge 1\), \({\mathcal {M}}^t\) can be written as:

$$\begin{aligned} {\mathcal {M}}^t=\left( \begin{array}{cc} RD^tL &{}\quad \left( R\sum _{k=0}^{t-1}D^kL\right) {\mathcal {M}}_2 \\ \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) ~, \end{aligned}$$
(22)

where \(D=2(1-r_d)r_\mathrm{div}(1-r_s)\varLambda _N+(1-r_d)(1-r_\mathrm{div})(1-r_s){\mathcal {I}}_{N+1}\) is a diagonal matrix. We obtain its expression thanks to Proposition 2.

Moreover, by Proposition 3 and Eq. (20) we have:

$$\begin{aligned} \widetilde{{\mathcal {M}}}=\left( \begin{array}{cc} R\widetilde{D}L &{}\quad \widetilde{{\mathcal {M}}}_2 \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) ~, \end{aligned}$$
(23)

where \(\widetilde{D}=2(1-r_d)r_\mathrm{div}\varLambda _N+(1-r_d)(1-r_\mathrm{div}){\mathcal {I}}_{N+1}\) is a diagonal matrix.

Proposition 4 claims:

$$\begin{aligned} {\mathbb {E}}(S_t)=r_s\displaystyle \sum _{k=0}^{{\overline{a}}_s}\left( {\mathbf {i}}{\mathcal {M}}^{t-1}\widetilde{{\mathcal {M}}}\right) _k \end{aligned}$$

From Eqs. (22) and (23):

$$\begin{aligned} {\mathcal {M}}^{t-1}\widetilde{{\mathcal {M}}}=\left( \begin{array}{cc} RD^{t-1}\widetilde{D}L &{}\quad RD^{t-1}L\widetilde{{\mathcal {M}}}_2+\left( R\sum _{k=0}^{t-2}D^kL\right) {\mathcal {M}}_2 \\ {\varvec{0}}_{2\times (N+1)} &{}\quad {\mathcal {I}}_2 \end{array}\right) \end{aligned}$$

Since, by hypothesis, \(\mathbf {i}=(0,\dots ,0,1,0,\dots ,0,0)\), with the only 1 being at position i, \(0\le i\le N\), then \(\left( {\mathbf {i}}{\mathcal {M}}^{t-1}\widetilde{{\mathcal {M}}}\right) \) denotes the ith-row of matrix \({\mathcal {M}}^{t-1}\widetilde{{\mathcal {M}}}\). Therefore, we are interested in the sum between 0 and \({\overline{a}}_s\) of the elements of the ith-row of matrix \({\mathcal {M}}^{t-1}\widetilde{{\mathcal {M}}}\), i.e., of the ith-row of matrix \(RD^{t-1}\widetilde{D}L\), since clearly \({\overline{a}}_s\le N\). \(D^{t-1}\widetilde{D}\) is a diagonal matrix whose \(\ell \)th-diagonal element is given by:

$$\begin{aligned} \left( D^{t-1}\widetilde{D}\right) _{\ell }= & {} (2(1-r_d)r_\mathrm{div}(1-r_s)\lambda _{\ell }+(1-r_d)(1-r_\mathrm{div})(1-r_s))^{t-1} \\&\cdot (2(1-r_d)r_\mathrm{div}\lambda _{\ell }+(1-r_d)(1-r_\mathrm{div})) \\= & {} (1-r_s)^{t-1}(1-r_d)^t\left( 2\lambda _{\ell }r_\mathrm{div}+1-r_\mathrm{div}\right) ^t \end{aligned}$$

The result follows observing that: \(\left( RD^{t-1}\widetilde{D}L\right) _{ik}=\sum _{\ell =0}^N\left( D^{t-1}\widetilde{D}\right) _{\ell }r_{i\ell }l_{\ell k}\). \(\square \)

Appendix F: Heuristic Proof of Proposition 6

Proposition

For all \(t\in {\mathbb {N}}\) the value \(r_s(t)\) which maximizes the expected number of selected B-cells at the tth maturation cycle is:

$$\begin{aligned} r_s(t)=\frac{1}{t} \end{aligned}$$

Hypothesis 1

\({\mathcal {Q}}_N\) converges through its stationary distribution, denoted by \(\mathbf {m}=(m_i)\), \(i\,\in \,\{0,\dots ,N\}\).

Hypothesis 2

\(Z_t\) explodes, where \((Z_t)_{t\in {\mathbb {N}}}\) is given by Definition 4.

Let \({\widetilde{Z}}_t\), \(t\ge 0\) be the random variable describing the GC population size at time t before the selection mechanism is performed for this generation. For the sake of simplicity, let us suppose \({\widetilde{Z}}_0=1\). \(({\widetilde{Z}}_t)_{t\in \mathbb {N}}\) is a MC on \(\{0,1,2,\dots \}\). Denoted by \(\tilde{p}_k:={\mathbb {P}}({\widetilde{Z}}_1=k)\), \(k\,\in \,\{0,1,2\}\):

$$\begin{aligned} \left\{ \begin{array}{l} \tilde{p}_0=r_d \\ \tilde{p}_1=(1-r_d)(1-r_\mathrm{div}) \\ \tilde{p}_2=(1-r_d)r_\mathrm{div} \end{array}\right. \end{aligned}$$
(24)

It follows: \(\tilde{m}:={\mathbb {E}}({\widetilde{Z}}_1)=(1-r_d)(1-r_\mathrm{div})+2(1-r_d)r_\mathrm{div}=(1-r_d)(1+r_\mathrm{div})\).

Conditioning to \(Z_t=k\), \({\widetilde{Z}}_{t+1}\) is distributed as the sum of k independent copies of \({\widetilde{Z}}_1\), which gives:

$$\begin{aligned} {\mathbb {E}}({\widetilde{Z}}_t)={\mathbb {E}}(Z_{t-1}){\mathbb {E}}({\widetilde{Z}}_1)={\mathbb {E}}(Z_1)^{t-1}{\mathbb {E}}({\widetilde{Z}}_1)=(1-r_d)^t(1+r_\mathrm{div})^t(1-r_s)^{t-1} \end{aligned}$$
(25)

Thanks to Hypotheses 1 and 2, if t is big enough, there is approximately a proportion of \(m_i\) elements in the ith-affinity class with respect to \(\overline{\mathbf {x}}\). Therefore, on average at time t there are approximately \(\sum _{i=0}^{{\overline{a}}_s}m_i{\mathbb {E}}({\widetilde{Z}}_t)\) B-cells in the GC belonging to an affinity class with index at most equal to \({\overline{a}}_s\) with respect to \(\overline{\mathbf {x}}\), before the selection mechanism is performed for this generation. Each one of these cells can be submitted to selection with probability \(r_s\), and in this case it will be positively selected. Hence:

$$\begin{aligned} {\mathbb {E}}(S_t)\simeq r_s\sum _{i=0}^{{\overline{a}}_s}m_i{\mathbb {E}}({\widetilde{Z}}_t)=(1-r_d)^t(1+r_\mathrm{div})^t(1-r_s)^{t-1}r_s\sum _{i=0}^{{\overline{a}}_s}m_i~, \end{aligned}$$
(26)

which is maximized at time \(t\ge 1\) for \(r_s(t)=1/t\).

Remark 8

One observes that the approximation in  (26) gives the same value for the optimal \(r_s(t)\) as in Proposition 6. Nevertheless, it does not allow to describe exactly the behavior of \({\mathbb {E}}(S_t)\), since it is obtained by approximating the distribution of B-cells in the GC with their stationary distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balelli, I., Milišić, V. & Wainrib, G. Multi-type Galton–Watson Processes with Affinity-Dependent Selection Applied to Antibody Affinity Maturation. Bull Math Biol 81, 830–868 (2019). https://doi.org/10.1007/s11538-018-00548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-00548-y

Keywords

Mathematics Subject Classification

Navigation