Skip to main content
Log in

Mathematical Modeling of Ischemia–Reperfusion Injury and Postconditioning Therapy

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reperfusion (restoration of blood flow) after a period of ischemia (interruption of blood flow) can paradoxically place tissues at risk of further injury: so-called ischemia–reperfusion injury or IR injury. Recent studies have shown that postconditioning (intermittent periods of further ischemia applied during reperfusion) can reduce IR injury. We develop a mathematical model to describe the reperfusion and postconditioning process following an ischemic insult, treating the blood vessel as a two-dimensional channel, lined with a monolayer of endothelial cells that interact (respiration and mechanotransduction) with the blood flow. We investigate how postconditioning affects the total cell density within the endothelial layer, by varying the frequency of the pulsatile flow and the oxygen concentration at the inflow boundary. We find that, in the scenarios we consider, the pulsatile flow should be of high frequency to minimize cellular damage, while oxygen concentration at the inflow boundary should be held constant, or subject to only low-frequency variations, to maximize cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Limiting the mPTP aperture can therefore limit cellular injury considerably, which has made mPTP an attractive target for pharmacological treatment of IR injury (Argaud et al. 2005; Mockford et al. 2009; Yellon and Hausenloy 2007).

  2. In this paper, asterisks * distinguish dimensional quantities from their dimensionless equivalents.

References

  • Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111(2):194–197

    Article  Google Scholar 

  • Baran KW, Nguyen M, McKendall GR, Lambrew CT, Dykstra G, Palmeri ST, Gibbons RJ, Borzak S, Sobel BE, Gourlay SG et al (2001) Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction limitation of myocardial infarction following thrombolysis in acute myocardial infarction (limit ami) study. Circulation 104(23):2778–2783

    Article  Google Scholar 

  • Bywaters E, Beall D (1941) Crush injuries with impairment of renal function. Br Med J 1(4185):427–432

    Article  Google Scholar 

  • Clementi E, Brown GC, Foxwell N, Moncada S (1999) On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci 96(4):1559–1562

    Article  Google Scholar 

  • De Laplanche E, Gouget K, Cléris G, Dragounoff F, Demont J, Morales A, Bezin L, Godinot C, Perrière G, Mouchiroud D et al (2006) Physiological oxygenation status is required for fully differentiated phenotype in kidney cortex proximal tubules. Am J Physiol Ren Physiol 291(4):F750–F760

    Article  Google Scholar 

  • Ezzati M, Bainbridge A, Broad KD, Kawano G, Oliver-Taylor A, Rocha-Ferreira E, Alonso-Alconada D, Fierens I, Rostami J, Jane Hassell K et al (2016) Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter. J Cereb Blood Flow Metab 36(8):1396–1411

    Article  Google Scholar 

  • Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F (2002) The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol 40(7):1199–1204

    Article  Google Scholar 

  • Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR, George BS, Kereiakes DJ, Deitchman D, Gustafson N (1994) Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89(5):1982–1991

    Article  Google Scholar 

  • Girn HRS, Ahilathirunayagam S, Mavor AI, Homer-Vanniasinkam S (2007) Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc Endovasc Surg 41(4):277–293

    Article  Google Scholar 

  • Hausenloy DJ (2009) Signalling pathways in ischaemic postconditioning. Thromb Haemost 101(4):626–34

    Google Scholar 

  • Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35(4):339–341

    Article  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (risk)-pathway. Cardiovasc Res 61(3):448–460

    Article  Google Scholar 

  • Hausenloy DJ, Yellon DM (2008) Remote ischemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386

    Article  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60(3):617–625

    Article  Google Scholar 

  • Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361(9351):13–20

    Article  Google Scholar 

  • Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia–reoxygenation injury. Am J Physiol Cell Physiol 282(2):C227–C241

    Article  Google Scholar 

  • Ma X, Zhang X, Li C, Luo M (2006) Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. J Interven Cardiol 19(5):367–375

    Article  Google Scholar 

  • Mertens P, Maes A, Nuyts J, Belmans A, Desmet W, Esplugas E, Charlier F, Figueras J, Sambuceti G, Schwaiger M et al (2006) Recombinant P-selectin glycoprotein ligand–immunoglobulin, a P-selectin antagonist, as an adjunct to thrombolysis in acute myocardial infarction. The P-selectin antagonist limiting myonecrosis (PSALM) trial. Am Heart J 152(1):125.e1–125.e8

    Article  Google Scholar 

  • Mockford K, Girn H, Homer-Vanniasinkam S (2009) Postconditioning: current controversies and clinical implications. Eur J Vasc Endovasc Surg 37(4):437–442

    Article  Google Scholar 

  • Seal JB, Gewertz BL (2005) Vascular dysfunction in ischemia–reperfusion injury. Ann Vasc Surg 19(4):572–584

    Article  Google Scholar 

  • Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Investig 106(7):809–812

    Article  Google Scholar 

  • St-Denis C, Fell C (1971) Diffusivity of oxygen in water. Can J Chem Eng 49(6):855–855

    Article  Google Scholar 

  • Tanguay JF, Krucoff MW, Gibbons RJ, Chavez E, Liprandi AS, Molina-Viamonte V, Aylward PE, Lopez-Sendon JL, Holloway DS, Shields K et al (2003) Efficacy of a novel P-selectin antagonist, rPSGL-Ig for reperfusion therapy in acute myocardial infarction: the RAPSODY trial. J Am Coll Cardiol 41(6):404–405

    Article  Google Scholar 

  • Tsujita K, Shimomura H, Kaikita K, Kawano H, Hokamaki J, Nagayoshi Y, Yamashita T, Fukuda M, Nakamura Y, Sakamoto T et al (2006) Long-term efficacy of edaravone in patients with acute myocardial infarction. Circ J 70(7):832–837

    Article  Google Scholar 

  • Venugopal V, Hausenloy DJ, Ludman A, Di Salvo C, Kolvekar S, Yap J, Lawrence D, Bognolo J, Yellon DM (2009) Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 95(19):1567–1571

    Article  Google Scholar 

  • Vinten-Johansen J, Shi W (2011) Perconditioning and postconditioning current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther 16(3–4):260–266

    Article  Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill Science/Engineering/Math, New York

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135

    Article  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge many useful discussions with Raquel Perez-Castillejos, who introduced us to this problem and who suggested the experimental setup that could be used to test model predictions in vitro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Fong.

Additional information

The views expressed in this article are the author’s own and not those of the US Merchant Marine Academy, the Maritime Administration, the Department of Transportation, or the US government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong, D., Cummings, L.J. Mathematical Modeling of Ischemia–Reperfusion Injury and Postconditioning Therapy. Bull Math Biol 79, 2474–2511 (2017). https://doi.org/10.1007/s11538-017-0337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0337-7

Keywords

Navigation