Skip to main content
Log in

Stability Analysis of a Model of Interaction Between the Immune System and Cancer Cells in Chronic Myelogenous Leukemia

  • Special Issue : Mathematical Oncology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe here a simple model for the interaction between leukemic cells and the autologous immune response in chronic phase chronic myelogenous leukemia (CML). This model is a simplified version of the model we proposed in Clapp et al. (Cancer Res 75:4053–4062, 2015). Our simplification is based on the observation that certain key characteristics of the dynamics of CML can be captured with a three-compartment model: two for the leukemic cells (stem cells and mature cells) and one for the immune response. We characterize the existence of steady states and their stability for generic forms of immunosuppressive effects of leukemic cells. We provide a complete co-dimension one bifurcation analysis. Our results show how clinical response to tyrosine kinase inhibitors treatment is compatible with the existence of a stable low disease, treatment-free steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Burchert A, Inselmann S, Saussele S, Dietz CT, Müller MC, Eigendorff E, Brümmendorf TH, Waller C, Dengler J, Goebeler ME, Herbst R, Freunek G, Hanzel S, Illmer T, Wang Y, Neubauer A, Lange T, Hochhaus A, Florian F, Brendel CA, Guilhot J, Mahon FX, Schütz C (2015) Frequency of CTLA-4 receptor ligand (CD86, B7.2)-positive plasmacytoid dendritic cells predicts risk of disease recurrence after tyrosine-kinase inhibitor discontinuation in chronic myeloid leukemia: results from a prospective substudy of the Euroski trial. Blood 126(23):599

    Google Scholar 

  • Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, Bhatia R (2011) Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118(20):5565–5572

    Article  Google Scholar 

  • Clapp GD (2016) Applying mathematical models to study the role of the immune system in chronic myelogenous leukemia. Ph.D. Dissertation, University of Maryland, College Park

  • Clapp GD, Levy D (2015) A review of mathematical models for lymphoma and leukemia. Drug Discov Today Dis Models 16:1–6

    Article  Google Scholar 

  • Clapp GD, Lepoutre T, Nicolini N, Levy D (2016) BCR-ABL transcript variations in chronic myelogenous leukemia patients on imatinib first-line: Possible role of the autologous immune system. Oncoimmunology 5(5):e1122159

    Article  Google Scholar 

  • Clapp GD, Lepoutre T, El Cheikh R, Bernard S, Ruby J, Labussière-Wallet H, Nicolini F, Levy D (2015) Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with imatinib. Cancer Res 75(19):4053–4062

    Article  Google Scholar 

  • Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356

    Google Scholar 

  • Falkenburg JH, Wafelman AR, Joosten P, van Smit WM, Bergen CA, Bongaerts R, van Der Lurvink E, Hoorn M, Kluck P, Landegent JE, Kluin-Nelemans HC, Fibbe WE, Willemze R (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94(4):1201–1208

    Google Scholar 

  • Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2008) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325

    Article  Google Scholar 

  • Ilander M, Kreutzman A, Mustjoki S (2014) IFN\(\alpha \) induces prolonged remissions modeling curative immunologic responses in chronic myeloid leukemia. Oncoimmunology 3:e28781

    Article  Google Scholar 

  • Kim PS, Lee PP, Levy D (2008) Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput Biol 4(6):e1000095

  • Komarova N, Wodarz D (2007) Effect of cellular quiescence on the success of targeted CML therapy. PLoS one 2(10):e990

    Article  Google Scholar 

  • Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math Biol 56(2):295–321

    Article  MATH  Google Scholar 

  • Mahon F-X, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini L, Legros L, Charbonnier A, Guerci A, Varet B, Etienne G, Reiffers J, Rousselot P (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035

    Article  Google Scholar 

  • Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435(7046):1267–1270

    Article  Google Scholar 

  • O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004

    Article  Google Scholar 

  • Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, Coiteux V, Gardembas M, Berthou C, Vekhoff A, Rea D, Jourdan E, Allard C, Delmer A, Rousselot P, Legros L, Berger M, Corm S, Etienne G, Roche-Lestienne C, Eclache V, Mahon FX, Guilhot F (2010) Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med 363(26):2511–2521

    Article  Google Scholar 

  • Roeder I, Horn M, Glauche I, Hochhaus A, Mueller M, Loeffler M (2006) Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 12(10):1181–1184

    Article  Google Scholar 

  • Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, Slader C, Field C, Dang P, Filshie RJ, Mills AK, Grigg AP, Melo JV, Hughes TP (2010) Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24(10):1719–1724

    Article  Google Scholar 

  • Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, Blanchet O, Marit G, Gluckman E, Reiffers J, Gardembas M, Mahon FX (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109(1):58–61

    Article  Google Scholar 

Download references

Acknowledgements

The work of GC was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1322106. The work of DL was supported in part by the John Simon Guggenheim Memorial Foundation. The work was supported by the Inria Partnerships Program grant “Modelling Leukemia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apollos Besse.

Appendix

Appendix

The following equations are satisfied by positive steady states of the model (4). They will be used in the technical lemmas.

$$\begin{aligned} {\bar{z}}&= \frac{s}{f({\bar{y}}_2)},\\ {\bar{z}}&= \frac{d_2}{\mu } \frac{M-{\bar{y}}_2}{M\frac{d_2}{r}+{\bar{y}}_2},\\ \frac{r}{K}{\bar{y}}_{1}&= \frac{(r+d_2) {\bar{y}}_2}{M\frac{d_2}{r}+{\bar{y}}_2}\\ a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2}&= M\frac{d_2}{r}\frac{(r+d_2)}{M\frac{d_2}{r}+{\bar{y}}_2}. \end{aligned}$$

Lemma 1

Let \({\bar{x}}=({\bar{y}}_{1},{\bar{y}}_2,{\bar{z}})\) be a steady state of (4) such that \(f'({\bar{y}}_2)>0\). The steady state \({\bar{x}}\) is asymptotically stable if and only if \(\det (J({\bar{x}}))<0\).

Proof

The determinant of \(J({\bar{x}})\) is the product of all its eigenvalues, so it is equal to \(-\chi _J(0)\). We note that the polynomial \(\chi _J\) is convex on \({\mathbb {R}}^+\) and that

$$\begin{aligned} \chi _J'(0) - \frac{\chi _J(0)}{r+d_2}= & {} \left( (r+d_2) f({\bar{y}}_2)-\mu {\bar{z}}{\bar{y}}_2 f'({\bar{y}}_2) + \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2}\right) \\&- \frac{1}{r+d_2} \left( \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} f({\bar{y}}_2) - (r+d_2) \mu {\bar{z}} {\bar{y}}_2 f'({\bar{y}}_2) \right) \\= & {} (r+d_2) f({\bar{y}}_2) + \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} - \frac{1}{r+d_2} \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} f({\bar{y}}_2) \\= & {} \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} +\frac{f({\bar{y}}_2)}{r+d_2} \left( (r+d_2)^2- \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} \right) \\= & {} \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} +\frac{f({\bar{y}}_2)}{r+d_2} \left( \left( \frac{r}{K} {\bar{y}}_{1} + a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2}\right) ^2- \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} \right) \\= & {} \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} +\frac{f({\bar{y}}_2)}{r+d_2} \left( \left( \frac{r}{K} {\bar{y}}_{1}\right) ^2 + \left( a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2}\right) ^2+ \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} \right) >0. \end{aligned}$$

Here we used \(f({\bar{y}}_2)>0\) given by Proposition 2. We consider two cases:

Case 1: If \(\chi _J(0)<0\), then there exists a root in \({\mathbb {R}}_+^*\). In this case the steady state \({\bar{x}}\) is unstable.

Case 2: If \(\chi _J(0)>0\), then \(\chi _J'(0)>0\) and, by convexity, \(\chi _J\) stays non-negative on \({\mathbb {R}}_+^*\). If \(\chi _J\) admits three real roots, they are all negative, and the steady state is asymptotically stable. Otherwise, there exist two conjugate complex roots. In this case, we denote by x the negative real root and by z one of the two complex roots. First, note that since \(f'({\bar{y}}_2)>0\), we have:

$$\begin{aligned} \chi _J\left( -\frac{r}{K} {\bar{y}}_{1}\right)= & {} -a_1 {\bar{y}}_{1} \mu {\bar{z}} f'({\bar{y}}_2) <0. \end{aligned}$$

As \(\chi _J\) has only one sign change on \({\mathbb {R}}\), at x, we deduce that \(-\frac{r}{K} {\bar{y}}_{1}<x\). Yet,

$$\begin{aligned} 2 {\text {Re}}(z) +x =-\frac{r}{K} {\bar{y}}_{1}-a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2}-\frac{s}{f({\bar{y}}_2)} < x - a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} - \frac{s}{f({\bar{y}}_2)}. \end{aligned}$$

Hence

$$\begin{aligned} {\text {Re}}(z)< - \frac{1}{2} \left( a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} + \frac{s}{f({\bar{y}}_2)}\right) <0. \end{aligned}$$

We have shown that complex roots have negative real parts in the case where \(f'({\bar{y}}_2)\) is positive. Therefore, the steady state is asymptotically stable. \(\square \)

Lemma 2

Let \({\bar{x}}=({\bar{y}}_{1},{\bar{y}}_2,{\bar{z}})\) be a steady state of (4). The determinant of the corresponding Jacobian matrix \(\det (J({\bar{x}}))\) has a sign opposite to that of \(A'B-AB'\).

Proof

We compute

$$\begin{aligned} A'B-AB'= & {} (f'(X)(M-X)-f(X))\left( X+\frac{d_2}{r}M\right) - f(X)(M-X) \\= & {} f'(X) (M-X)\left( X+\frac{d_2}{r}M\right) - f(X) M \left( 1+\frac{d_2}{r}\right) . \end{aligned}$$

Let \({\bar{x}}=({\bar{y}}_{1},{\bar{y}}_2,{\bar{z}})\) be a steady state for system (4). The determinant of the Jacobian matrix at \({\bar{x}}\) is

$$\begin{aligned} \det (J({\bar{x}}))= & {} \frac{r}{K} {\bar{y}}_{1} a_1 \frac{{\bar{y}}_{1}}{{\bar{y}}_2} f({\bar{y}}_2) - (r+d_2) \mu {\bar{z}} {\bar{y}}_2 f'({\bar{y}}_2) \\= & {} \frac{(r+d_2) {\bar{y}}_2}{M\frac{d_2}{r}+{\bar{y}}_2} M\frac{d_2}{r}\frac{(r+d_2)}{M\frac{d_2}{r}+{\bar{y}}_2} f({\bar{y}}_2) - (r+d_2) d_2 \frac{M-{\bar{y}}_2}{M\frac{d_2}{r}+{\bar{y}}_2} {\bar{y}}_2 f'({\bar{y}}_2) \\= & {} \frac{d_2(r+d_2){\bar{y}}_2}{ \left( M\frac{d_2}{r}+{\bar{y}}_2\right) ^2} \left( M \left( 1+\frac{d_2}{r}\right) f({\bar{y}}_2) - \left( M-{\bar{y}}_2\right) \left( M\frac{d_2}{r}+{\bar{y}}_2\right) f'({\bar{y}}_2) \right) \\= & {} -\frac{d_2(r+d_2){\bar{y}}_2}{ \left( M\frac{d_2}{r}+{\bar{y}}_2\right) ^2} (A'B-AB')({\bar{y}}_2) . \end{aligned}$$

Hence \(sign(\det (J({\bar{x}})))=-sign((A'B-AB')({\bar{y}}_2))\).\(\square \)

Lemma 3

Let \(x\ge 0\). The following conditions are equivalent:

  1. 1.

    \((A'B-AB')(x)=0\),

  2. 2.

    x is a double root of \(P_\theta \), where \(\theta :=\frac{A(x)}{B(x)}\).

Proof

Let x be a positive zero of \(A'B-AB'\). We fix \(\theta :=\frac{A(x)}{B(x)}\). Then,

$$\begin{aligned} P_\theta (x)= & {} -A(x)+\theta B(x) = 0, \\ P_\theta '(x)= & {} -A'(x)+\theta B'(x) =-\frac{A'B-A B'}{B}(x) = 0. \end{aligned}$$

Hence x is a double zero of \(P_\theta \).

Reciprocally, let \((\theta ,x)\) be such that x is a double zero of \(P_\theta \). Since \(P_\theta (x)=0\), \(\theta =\frac{A}{B}(x)\). Also, since \(P_\theta '(x)=0\), \((A'B-A B')(x)=0\), which means that x is a zero of \(A'B-A B'\). \(\square \)

Lemma 4

Consider the polynomial \(P=X^3+a X^2 + b X+ c\), where \(a,b,c\in {\mathbb {R}}_+^*\). If \(a b >c\), then all roots of P have negative real part.

Proof

First, positivity of all coefficients ensures that the real roots of P cannot be positive. Second, as \(P(0)=c>0\), P necessarily admits a real, negative root. It remains to characterize the two other roots. If real and negative, then the dominating root is negative and the lemma is proven. Therefore we may assume that the two remaining roots are complex, and we need to determine the sign of their real part.

Let \(\lambda \) be the first negative root of P. We can factor

$$\begin{aligned} P=\big (X-\lambda \big )\big (X^2+(a+\lambda ) X+ (b+a \lambda + \lambda ^2)\big ). \end{aligned}$$

By our assumption, P admits a pair of complex roots. We want to compare \(\big (X^2+(a+\lambda ) X+ (b+a \lambda + \lambda ^2)\big )\) and \((X-z)(X-{\bar{z}})\), where \(z\in {\mathbb {C}}\). Separating the real and imaginary parts leads to

$$\begin{aligned} a+\lambda&=-2 {\text {Re}}(z), \\ b+a \lambda + \lambda ^2&=({\text {Re}}(z))^2+({\text {Im}}(z))^2. \end{aligned}$$

In order to find the sign of \({\text {Re}}(z)\), we need to compare a and \(\lambda \). We have \(P(-a)=-a b +c\). Since we assume that \(a b >c\), we obtain \(P(-a)<0\). As P has only one real root \(\lambda \), we obtain \(-a<\lambda \). This leads to \({\text {Re}}(z)<0\), and the dominating root of P has its real part negative. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besse, A., Clapp, G.D., Bernard, S. et al. Stability Analysis of a Model of Interaction Between the Immune System and Cancer Cells in Chronic Myelogenous Leukemia. Bull Math Biol 80, 1084–1110 (2018). https://doi.org/10.1007/s11538-017-0272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0272-7

Keywords

Navigation