Skip to main content
Log in

Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abraham W (2006) Controlling biofilms of gram-positive pathogenic bacteria. Curr Med Chem 13(13):1509–1524

    Article  Google Scholar 

  • Almeida A, Amado I, Reynolds J, Berges J, Lythe G, Molina-Paris C, Freitas AA (2012) Quorum sensing in cd4+ t cell homeostasis: a hypothesis and a model. Front Microbiol 3:125

    Article  Google Scholar 

  • Alpkvist E, Picioreanu C, van Loosdrecht M, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum eps matrix. Biotechnol Bioeng 94(5):961–979

    Article  Google Scholar 

  • Barbarossa MV, Kuttler C, Fekete A, Rothballer M (2010) A delay model for quorum sensing of pseudomonas putida. BioSystems 102:148–156

    Article  Google Scholar 

  • Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5(9):721–726

    Article  Google Scholar 

  • Bell N, Garland M (2012) Cusp: generic parallel algorithms for sparse matrix and graph computations (preprint)

  • Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfatial free energy. J Chem Phys 28(2):258–267

    Article  Google Scholar 

  • Cahn JW (1959) Free energy of a nonuniform system. II. Thermodynamic basis. J Chem Phys 30(5):1121

    Google Scholar 

  • Cárcamo-Oyarce G, Lumjiaktase P, Kümmerli R, Eberl L (2015) Quorum sensing triggers the stochastic escape of individual cells from pseudomonas putida biofilms. Nat Commun 6:5945

    Article  Google Scholar 

  • Chen LQ (2002) Phase-field models for microstructure evolution. Ann Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  • Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) Visit: an end-user tool for visualizing and analyzing very large data. High performance visualization-enabling extreme-scale scientific. Insight, pp 357–372

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29:339–346

    Article  MATH  Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65:1053–1079

    Article  MATH  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279

    Article  Google Scholar 

  • Cogan NG (2006) Effects of persister formation on bacterial response to dosing. J Theor Biol 238:694–703

    Article  MathSciNet  Google Scholar 

  • Cogan NG (2011) Computational exploration of disinfection of bacterial biofilms in partially blocked channels. Int J Numer Methods Biomed Eng 27:1982–1995

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166

    Article  MATH  Google Scholar 

  • Cogan NG, Keener JP (2005) Channel formation in gels. SIAM J Appl Math 65(6):1839–1854

    Article  MathSciNet  MATH  Google Scholar 

  • Cogan NG, Brown J, Darres K, Petty K (2012) Optimal control strategies for disinfection of bacterial populations with persister and susceptible dynamics. Antimicrob Agents Chemother 56(9):4816–4826

    Article  Google Scholar 

  • Dilanji G, Langebrake J, Leenheer P, Hagen S (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134:5618–5626

    Article  Google Scholar 

  • Donlan RM (2002) Biofilms microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  Google Scholar 

  • Emerenini B, Hense B, Kuttler C, Eberl H (2015) A mathematical model of quorum sensing induced biofilm detachment. PLOS ONE 10(7):e0132385

    Article  Google Scholar 

  • Emerenini B, Sonner S, Eberl H (2017) Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Math Biosci Eng 14(3):625–653

    MathSciNet  MATH  Google Scholar 

  • Fauvart M, Phillips P, Bachaspatimayum D, Verstraeten N, Fransaer J, Michiels J, Vermant J (2012) Surface tension gradient control of bacterial swarming in colonies of pseudomonas aeruginosa. Soft Matter 8:70–76

    Article  Google Scholar 

  • Fekete A, Kuttler C, Rothballer M, Hense B, Fischer D, Buddrus-Schiemann K, Lucio M, Muller J, Schmitt-Kopplin P (2010) Dynamic regulation of \(n\)-acyl-homoserine lactone production and degradation in pseudomonas putidalsof. FEMS Microbiol Ecol 72:22–34

    Article  Google Scholar 

  • Fozard JA, Lees M, King JR, Logan BS (2012) Inhibition of quorum sensing in a computational biofilm simulation. BioSystems 109:105–114

    Article  Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Muller J, Eberl HJ (2010) A mathematical model of quorum sensing in patchy biofilm communities with slow background flow. Can Appl Math Q 18(3):267–298

    MathSciNet  MATH  Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor Biol Med Model 8(1):8

    Article  Google Scholar 

  • Garcia-Aljaro C, Melado-Rovira S, Milton DL, Blanch AR (2012) Quorum-sensing regulates biofilm formation in virio schophthalmi. BMC Microbiol 12:287

    Article  Google Scholar 

  • Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37(6):849–871

    Article  Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in vibrio chelerae. Mol Microbiol 50(1):101–114

    Article  Google Scholar 

  • Heithoff DM, Mahan MJ (2004) Vibrio cholerae biofilms: stuck between a rock and a hard place. J Bacteriol 186(15):4835–4837

    Article  Google Scholar 

  • Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Investig 112(9):1300–1307

    Article  Google Scholar 

  • Hinson R, Kocher W (1996) Model for effective diffusivities in aerobic biofilms. J Environ Eng 122(11):1023–1030

    Article  Google Scholar 

  • Jabbari S, King JR, Williams P (2012a) Cross-strain quorum sensing inhibition by staphylococcus aureus. Part 1: a spatially homogeneous model. Bull Math Biol 74(6):1292–3251

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari S, King JR, Williams P (2012b) Cross-strain quorum sensing inhibition by staphylococcus aureus. Part 2: a spatially inhomogeneous model. Bull Math Biol 74(6):1326–1353

    Article  MathSciNet  MATH  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    Article  Google Scholar 

  • Kim MK, Ingremeau F, Zhao A, Basseler BL, Stone HA (2016) Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol 1:15005

    Article  Google Scholar 

  • Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL, Stoodley P, Parsek MR (2007) Influence of the hydrodynamic environment on quorum sensing in pseudomonas aeruginosa biofilms. J Bacteriol 189:8357–8360

    Article  Google Scholar 

  • Koerber AJ, King JR, Ward JP (2002) A mathematical model of partial-thickness burn-wound infection by pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol 64(239–259):239–259

    Article  MATH  Google Scholar 

  • Kommedal R, Bakke R, Dockery J, Stoodley P (2001) Modeling production of extracellular polymeric substances in a pseudomonas aeruginosa chemostat culture. Water Sci Technol 43(6):129–134

    Google Scholar 

  • Langebrake J, Dilanji G, Hagen S, Leenheer P (2014) Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J Theor Biol 363:53–61

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis K (2010) Persister cells. Ann Rev Microbiol 64(1):357–372

    Article  Google Scholar 

  • Lindley B, Wang Q, Zhang T (2011) A multicomponent model for biofilm-drug interaction. Discrete Contin Dyn Syst Ser B 15:417–456

    Article  MathSciNet  MATH  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, Gonzalez JE (2003) Quorum sensing controls exopolysaccharide production in sinorhizobium melioti. J Bacteriol 185(1):325–331

    Article  Google Scholar 

  • Matur MG, Muller J, Kuttler C, Hense RA (2015) An approximative approach for single cell spatial modeling of quorum sensing. J Comput Biol 22(3):227–235

    Article  Google Scholar 

  • Miller M, Bassler B (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199

    Article  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):0171–0179

    Article  Google Scholar 

  • Nealson K, Platt T, Hastings JW (1970) The cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104(1):313–322

    Google Scholar 

  • Parsek MR, Tolker-Nielsen T (2008) Pattern formation in pseudomonas aeruginosa biofilms. Curr Opin Biotechnol 11:560–566

    Google Scholar 

  • Perez-Velazquez J, Quinones B, Hense B, Kuttler C (2015) A mathematical model to investigate quorum sensing regulation and its heterogeneity in pseudomonas syringae on leaves. Ecol Complex 21:128–141

    Article  Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential discrete cellular automaton approach. Biotechnol Bioeng 58(1):101–116

    Article  Google Scholar 

  • Popat R, Crusz S, Messina M, Williams P, West S, Diggle SP (2012) Quorum-sensing and cheating in bacterial biofilms. Proc R Soc B Biol Sci 279(1748):4765–4771

    Article  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of ahl production and its contribution to epiphytic fitness in pseudomonas syringae. MPMI 17(5):521–531

    Article  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in pseudomonas syringae. Mol Plant Microbe Interact 18(7):682–693

    Article  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modeling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80

    Article  Google Scholar 

  • Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386

    Article  Google Scholar 

  • Sanclement JA, Webster P, Thomas J, Ramadan HH (2005) Bacterial biofilms in surgical specimens of patients with crhonic rhinosinusitis. Laryngoscope 115(4):578–582

    Article  Google Scholar 

  • Shen Y, Stojic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37(5):657–661

    Article  Google Scholar 

  • Shen Y, Zhao J, de la Fuente-Núñez C, Wang Z, Hancock RE, Roberts CR, Ma J, Li J, Haapasalo M, Wang Q (2016) Experimental and theoretical investigation of multispecies oral biofilm resistance to chlorhexidine treatment. Sci Rep 6:27537. doi:10.1038/srep27537

    Article  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  Google Scholar 

  • Sonner S, Efendiev MA, Eberl HJ (2011) On the well-posedness of a mathematical model of quorum-sensing in patchy biofilm communities. Math Methods Appl Sci 34:1667–1684

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522

    Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491

    Article  Google Scholar 

  • Teodosio JS, Simões M, Melo LF, Mergulhao FJ (2011) Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 27(1):1–11

    Article  Google Scholar 

  • Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal ai-2 affects the antibiotic-treated gut microbiota. Cell Rep 10:1–11

    Article  Google Scholar 

  • Uecke H, Müller J, Hense B (2014) Individual-based model for quorum sensing with background flow. Bull Math Biol 76(7):1727–1746

    Article  MathSciNet  MATH  Google Scholar 

  • Vaughan B, Smith B, Chopp D (2010) The influence of fluid flow on modeling quorum sensing in bacterial biofilms. Bull Math Biol 72(5):1143–1165

    Article  MATH  Google Scholar 

  • Vuong C, Gerke C, Somerville G, Fischer E, Otto M (2003) Quorum-sensing control of biofilm factors in staphylococcus epidermidis. J Infect Dis 188(5):706–718

    Article  Google Scholar 

  • Ward JP, King JR, Koerber A, Williams P, Croft J, Sockett R (2001) Mathematical modelling of quorum sensing in bacteria. Math Med Biol 18(3):263–292

    Article  MATH  Google Scholar 

  • Waters CM, Basseler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol 21(1):319–346

    Article  Google Scholar 

  • Whitehead NA, Barnard A, Slater H, Simpson N, Salmond G (2001) Quorum sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  Google Scholar 

  • Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. PNAS 104(3):876–881

    Article  Google Scholar 

  • Zhang T, Cogan NG, Wang Q (2008a) Phase-field models for biofilms i. Theory and simulations. SIAM J Appl Math 69:641–669

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Cogan NG, Wang Q (2008b) Phase-field models for biofilms ii. 2-d numerical simulations of biofilm-flow interaction. Commun Comput Phys 4(1):72–101

  • Zhao J, Seeluangsawat P, Wang Q (2016a) Modeling antimicrobial tolerance and treatment of heterogeneous biofilms. Math Biosci 282:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Shen Y, Happasalo M, Wang ZJ, Wang Q (2016b) A 3d numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J Theor Biol 392:83–98

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Wang Q, Yang X (2016c) Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput Methods Appl Mech Eng 310:77–97

    Article  MathSciNet  Google Scholar 

  • Zhao J, Yang X, Shen J, Wang Q (2016d) A decoupled energy stable scheme for a hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids. J Comput Phys 305:539–556

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Yang X, Wang Q (2016e) Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J Sci Comput 38(5):3264–3290

    Article  MathSciNet  Google Scholar 

  • Zhao J, Li H, Wang Q, Yang X (2017) Decoupled energy stable schemes for a phase field model of three-phase incompressible viscous fluid flow. J Sci Comput 70(3):1367–1389

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Qi Wang is partially supported by NIH and NSF through awards DMS-1200487, DMS-1517347, R01GM078994-05A1, and NSFC awards 11571032 and 91630207. Jia Zhao is partially supported by an ASPIRE grant from the Office of the Vice President for Research at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, Q. Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell. Bull Math Biol 79, 884–919 (2017). https://doi.org/10.1007/s11538-017-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0259-4

Keywords

Navigation