Skip to main content
Log in

A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\alpha _\mathrm{E} \) :

Rate constant for granule cell exit from EGL (measured in \(\hbox {h}^{-1}\))

\(\alpha _\mathrm{P} \) :

Rate constant for gcp proliferation (measured in \(\hbox {h}^{-1}\))

\(\delta (t)\) :

Time-dependent probability that a gcp differentiates into a granule cell

\(v_\mathrm{c} \) :

Volume of a gcp or differentiated granule cell (measured in \(\upmu \hbox {m}^{3}\))

a :

Initial slope of the probability function \(\delta (t)\) (measured in \(\hbox {h}^{-1}\))

\(A_\mathrm{i} (t)\) :

Area of the iEGL, a time-dependent function (measured in \(\upmu \hbox {m}^{2}\))

\(A_\mathrm{o} (t)\) :

Area of the oEGL, a time-dependent function (measured in \(\upmu \hbox {m}^{2}\))

EGL:

External granule layer of the cerebellum

gcp:

Granule cell precursor

iEGL:

Inner (differentiated) layer of the EGL

IGL:

Inner granule layer of the cerebellum

L :

Medial-lateral length of the cerebellar vermis, a constant (measured in \(\upmu \hbox {m}\))

ML:

Molecular layer of the cerebellum

MRI:

Magnetic resonance imaging

\(N_\mathrm{i} (t)\) :

Number of cells in the iEGL, a time-dependent function

\(N_\mathrm{o} (t)\) :

Number of cells in the oEGL, a time-dependent function

ODE:

Ordinary differential equation

oEGL:

Outer (proliferative) layer of the EGL

p27:

Molecular marker used to detect differentiated cells in the iEGL

P:

Postnatal day (e.g., P6 = postnatal day 6)

SHH:

Sonic Hedgehog, a mitogen for gcp proliferation

T :

= 1 / a (measured in h), the time that the linear \(\delta (t)\) Function becomes 1

\(T_\mathrm{d} \) :

Doubling time of gcps (measured in h)

\(T_\mathrm{E} \) :

Exit time of differentiated granule cells from the EGL (measured in h)

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Applied Mathematics Series 55 (Tenth printing with corrections 1972)

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton, FL

    Google Scholar 

  • Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, Turnbull DH, Joyner AL (2010) The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development 137:519–529

    Article  Google Scholar 

  • Corrales JD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811–1821

    Article  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    Google Scholar 

  • Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312

    Article  Google Scholar 

  • Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol 32:277–287

    Article  Google Scholar 

  • Goldowitz D, Cushing RC, Laywell E, D’Arcangelo G, Sheldon M, Sweet HO, Davisson M, Steindler D, Curran T (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J Neurosci 17:8767–8777

    Google Scholar 

  • Goodrich LV, Milenković L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    Article  Google Scholar 

  • Haddara MA, Nooreddin MA (1966) A quantitative study on the postnatal development of the cerebellar vermis of mouse. J Comp Neurol 128:245–254

    Article  Google Scholar 

  • Hatten ME, Rifkin DB, Furie MB, Mason CA, Liem RK (1982) Biochemistry of granule cell migration in developing mouse cerebellum. Prog Clin Biol Res 85(Pt B):509–519

    Google Scholar 

  • Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251:1239–1243

    Article  Google Scholar 

  • Kim JY, Nelson AL, Algon SA, Graves O, Sturla LM, Goumnerova LC, Rowitch DH, Segal RA, Pomeroy SL (2003) Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Dev Biol 263:50–66

    Article  Google Scholar 

  • Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL (2009) Cell lineages and the logic of proliferative control. PLoS Biol 7:e1000015

    Article  Google Scholar 

  • Legué E, Riedel E, Joyner AL (2015) Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum. Development 142:1661–1671

    Article  Google Scholar 

  • Matsuo S, Takahashi M, Inoue K, Tamura K, Irie K, Kodama Y, Nishikawa A, Yoshida M (2013) Thickened area of external granular layer and Ki-67 positive focus are early events of medulloblastoma in \({\rm Ptch1}^{+/-}\) mice. Exp Toxicol Pathol 65:863–873

  • Mares V, Lodin Z, Srajer J (1970) The cellular kinetics of the developing mouse cerebellum. I. The generation cycle, growth fraction and rate of proliferation of the external granular layer. Brain Res 23:323–342

    Article  Google Scholar 

  • Martinez S, Andreu A, Mecklenburg N, Echevarria D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MATH  Google Scholar 

  • Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, Lin SM, Wechsler-Reya RJ (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132:2425–2439

    Article  Google Scholar 

  • Roussel MF, Hatten ME (2011) Cerebellum: development and medulloblastoma. Cancer Dev 94:235–282

    Article  Google Scholar 

  • Seil FJ, Herndon RM (1970) Cerebellar granule cells in vitro: a light and electron microscope study. J Cell Biol 45:212–220

    Article  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    Google Scholar 

  • Sillitoe RV, Joyner AL (2007) Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 23:549–577

    Article  Google Scholar 

  • Sudarov A, Joyner AL (2007) Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2007(2):26

    Article  Google Scholar 

  • Suero-Abreu GA, Raju GP, Aristizábal O, Volkova E, Wojcinski A, Houston EJ, Pham D, Szulc KU, Colon D, Joyner AL, Turnbull DH (2014) In vivo Mn-enhanced MRI for early tumor detection and growth rate analysis in a mouse medulloblastoma model. Neoplasia 16:993–1006

    Article  Google Scholar 

  • Szulc KU, Lerch JP, Nieman BJ, Bartelle BB, Freidel M, Suero-Abreu GA, Watson C, Joyner AL, Turnbull DH (2015) 4D MEMRI atlas of neonatal FVB/N mouse brain development. Neuroimage 118:49–62

    Article  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the National Institutes of Health (NIH): R01NS038461 (to DHT) and R37MH085726 (to ALJ). Partial support was also provided by the NIH Cancer Center Support Grants at New York University Langone Medical Center (P30CA016087) and Memorial Sloan-Kettering Cancer Center (P30CA008748). SRL was partially supported by the NYU Developmental Genetics Graduate Program NIH Training Grant (T32HD007520), and CSP was partially supported by the Systems Biology Center New York under NIH grant P50GM071558. We thank Dr. Kamila Szulc for analyzing MRI data related to the vermis width and Jae Han (Andy) Lee for assistance with some of the analysis of histological data. We also thank the Histopathology Core at NYU School of Medicine for help with scanning the histological sections at high resolution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles S. Peskin or Daniel H. Turnbull.

Appendix: Derivation of the Formula for Average Clone Size for the Linear \(\delta (t)\) Probability Function

Appendix: Derivation of the Formula for Average Clone Size for the Linear \(\delta (t)\) Probability Function

The total number of granule cells generated is given by:

$$\begin{aligned} \hbox {N}_\mathrm{g} (\infty )=\hbox {N}_\mathrm{o} (0)+\alpha _\mathrm{P} \int _0^\infty \hbox {N}_\mathrm{o} (t) \hbox {d}t \end{aligned}$$
(13)

where

$$\begin{aligned} \hbox {N}_\mathrm{o} (t)=\hbox {N}_\mathrm{o} (0) \hbox {e}^{\alpha _\mathrm{P} \int _0^t \left( {1-2\delta \left( \tau \right) } \right) \hbox {d}\tau } \end{aligned}$$
(14)

and

$$\begin{aligned} \delta \left( \tau \right) =\left\{ {{\begin{array}{ll} \tau /T, &{} 0\le \tau <T \\ 1, &{} \tau \ge T \\ \end{array} }} \right. \end{aligned}$$
(15)

Substituting Eqs. (14) and (15) into (13), we have:

$$\begin{aligned} \frac{N_\mathrm{g} (\infty )}{N_\mathrm{o} (0)}=1+\alpha _\mathrm{P} \int _0^\mathrm{T} \hbox {e}^{\alpha _\mathrm{P} \int _0^t \left( {1-\frac{2\tau }{T}} \right) \hbox {d}\tau } \hbox {d}t+\alpha _\mathrm{P} \int _T^\infty \hbox {e}^{-\alpha _\mathrm{P} \left[ {\int _0^\mathrm{T} \left( {1-\frac{2\tau }{T}} \right) \hbox {d}\tau + \int _\mathrm{T}^t \hbox {d}\tau } \right] }\hbox {d}t\quad \end{aligned}$$
(16)

Note that \(\int _0^T \left( {1-\frac{2\tau }{T}} \right) \hbox {d}\tau =T-\frac{T^{2}}{T}=0\), so Eq. (16) becomes:

$$\begin{aligned} \frac{N_\mathrm{g} (\infty )}{N_\mathrm{o} (0)}= & {} 1+\alpha _\mathrm{P} \int _0^T \hbox {e}^{\alpha _\mathrm{P} \left( {t-\frac{t^{2}}{T}} \right) } \hbox {d}t+\alpha _\mathrm{P} \int _\mathrm{T}^\infty \hbox {e}^{-\alpha _\mathrm{P} \left( {t-T} \right) } \hbox {d}t\nonumber \\= & {} 2+\alpha _\mathrm{P} \int _0^T \hbox {e}^{\alpha _\mathrm{P} \left( {t-\frac{t^{2}}{T}} \right) } \hbox {d}t \end{aligned}$$
(17)

By expressing

$$\begin{aligned} \left( {t-\frac{t^{2}}{T}} \right) = \frac{T}{4}-\frac{1}{T}\left( {t^{2}-tT+ \frac{T^{2}}{4}} \right) = \frac{T}{4}-\frac{1}{T}\left( {t- \frac{T}{2}} \right) ^{2}, \end{aligned}$$

Equation (17) can be rewritten as:

$$\begin{aligned} \frac{\hbox {N}_\mathrm{g} (\infty )}{\hbox {N}_\mathrm{o} (0)}=2+\alpha _\mathrm{P} \hbox {e}^{\left( {\frac{\alpha _\mathrm{P} T}{4}} \right) }\int _0^T \hbox {e}^{-\frac{\alpha _\mathrm{P}}{T} \left( {t-\frac{T}{2}} \right) ^{2}}\hbox {d}t \end{aligned}$$
(18)

Now, we will define:

$$\begin{aligned} v=\sqrt{\frac{\alpha _\mathrm{P} }{T}}\left( {t-\frac{T}{2}} \right) ,\hbox { so that }\hbox {d}v=\sqrt{\frac{\alpha _\mathrm{P} }{T}}\hbox {d}t \end{aligned}$$
(19)

Then:

$$\begin{aligned} t=0 \Rightarrow v=-\frac{\sqrt{\alpha _\mathrm{P} T}}{2};\hbox { and }t=T \Rightarrow v=\frac{\sqrt{\alpha _\mathrm{P} T}}{2} \end{aligned}$$
(20)

Substituting Eqs. (19) and (20) into (18), we have:

$$\begin{aligned} \frac{N_\mathrm{g} (\infty )}{N_\mathrm{o} (0)}= & {} 2+\sqrt{\alpha _\mathrm{P} T}\hbox {e}^{\left( {\frac{\alpha _\mathrm{P} T}{4}} \right) }\int _{- \frac{\sqrt{\alpha _\mathrm{P} T}}{2}}^{\frac{\sqrt{\alpha _\mathrm{P} T}}{2}} \hbox {e}^{-v^{2}}\hbox {d}v\\= & {} 2+2\sqrt{\alpha _\mathrm{P} T}\hbox {e}^{\left( {\frac{\alpha _\mathrm{P} T}{4}} \right) }\int _0^{\frac{\sqrt{\alpha _\mathrm{P} T}}{2}} \hbox {e}^{-v^{2}}\hbox {d}v \end{aligned}$$

Therefore the average clone size is:

$$\begin{aligned} \frac{N_\mathrm{g} (\infty )}{N_\mathrm{o} (0)}=2+\sqrt{\left( {\alpha _\mathrm{P} T} \right) \pi } \hbox {e}^{\left( {\frac{\alpha _\mathrm{P} T}{4}} \right) } \hbox {erf}\left( {\frac{\sqrt{\alpha _\mathrm{P} T}}{2}} \right) \end{aligned}$$
(21)

where \(\hbox {erf}(x)\) is the error function defined as (Abramowitz and Stegun 1964):

$$\begin{aligned} \hbox {erf}(x)= \frac{2}{\sqrt{\pi }} \int _0^x \hbox {e}^{-v^{2}}\hbox {d}v \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leffler, S.R., Legué, E., Aristizábal, O. et al. A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development. Bull Math Biol 78, 859–878 (2016). https://doi.org/10.1007/s11538-016-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0163-3

Keywords

Navigation