Skip to main content
Log in

Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the evolution of mutation rate in a seasonally forced, deterministic, compartmental epidemiological model with a transmission–virulence trade-off. We model virulence as a quantitative genetic trait in a haploid population and mutation as continuous diffusion in the trait space. There is a mutation rate threshold above which the pathogen cannot invade a wholly susceptible population. The evolutionarily stable (ESS) mutation rate is the one which drives the lowest average density, over the course of one forcing period, of susceptible individuals at steady state. In contrast with earlier eco-evolutionary models in which higher mutation rates allow for better evolutionary tracking of a dynamic environment, numerical calculations suggest that in our model the minimum average susceptible population, and hence the ESS, is achieved by a pathogen strain with zero mutation. We discuss how this result arises within our model and how the model might be modified to obtain a nonzero optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. (13) is a second-order, linear ODE so there are two linearly independent solutions; however, only one of them (the Gaussian probability density) is normalizable so that the integral of the solution is equal to unity.

References

  • Abrams PA (2001) Modelling the adaptive dynamics of traits involved in inter- and intraspecic interactions: an assessment of three methods. Ecol Lett 4:166–175

    Article  Google Scholar 

  • Alizon S, van Baalen M (2005) Emergence of a convex trade-off between transmission and virulence. Am Nat 165(6):E155–E167

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Andre JB, Hochberg ME (2005) Virulence evolution in emerging infectious diseases. Evolution 59(7):1406–1412

    Article  Google Scholar 

  • Bergstrom CT, McElhany P, Real LA (1999) Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc Natl Acad Sci USA 96(9):5095–5100

    Article  Google Scholar 

  • Berngruber TW, Froissart R, Choisy M, Gandon S (2013) Evolution of virulence in emerging epidemics. PLoS Pathog 9(3):e1003,209

    Article  Google Scholar 

  • Bolker BM, Grenfell BT (1993) Chaos and biological complexity in measles dynamics. Proc R Soc B 251:75–81

    Article  Google Scholar 

  • Bolker BM, Nanda A, Shah D (2010) Transient virulence of emerging pathogens. J R Soc Interface 7(46):811–822

    Article  Google Scholar 

  • Cushing JM (1980) Two species competition in a periodic environment. J Math Biol 10(4):385–400. doi:10.1007/BF00276097

    Article  MATH  MathSciNet  Google Scholar 

  • Day T, Gandon S (2007) Applying population-genetic models in theoretical evolutionary epidemiology. Ecol Lett 10(10):876–888. doi:10.1111/j.1461-0248.2007.01091.x

    Article  Google Scholar 

  • Day T, Proulx S (2004) A general theory for the evolutionary dynamics of virulence. Am Nat 163(4):E40–E63. doi:10.1086/382548

    Article  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. PNAS 88(16):7160–7164

    Article  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon, Oxford

    Book  MATH  Google Scholar 

  • Froissart R, Doumayrou J, Vuillaume F, Alizon S, Michalakis Y (2010) The virulence-transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philos Trans R Soc B Biol Sci 365(1548):1907–1918. doi:10.1098/rstb.2010.0068

  • Herbeck JT, Mittler JE, Gottlieb GS, Mullins JI (2014) An HIV epidemic model based on viral load dynamics: value in assessing empirical trends in HIV virulence and community viral load. PLoS Comput Biol 10(6):e1003,673

    Article  Google Scholar 

  • Holmes EC (2013) What can we predict about viral evolution and emergence? Curr Opin Virol 3(2):180–184

    Article  Google Scholar 

  • Johnson T (1999) Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics 151(4):1621–1631

    Google Scholar 

  • Kimura M (1960) Optimum mutation rate and degree of dominance as determined by the principle of minimum genetic load. J Genet 57(1):21–34

    Article  Google Scholar 

  • Kimura M (1967) On the evolutionary adjustment of spontaneous mutation rates. Genet Res 9(01):23–34

    Article  Google Scholar 

  • Leigh EG Jr (1970) Natural selection and mutability. Am Nat 104(937):301–305

    Article  Google Scholar 

  • Leigh EG Jr (1973) The evolution of mutation rates. Genetics 73(Suppl 73):1–18

    MathSciNet  Google Scholar 

  • Lloyd AL (2004) Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques. Theor Popul Biol 65(1):49–65

    Article  MATH  Google Scholar 

  • Mollison D (1991) Dependence of epidemic and population velocities on basic parameters. Math Biosci 107:255–287

    Article  MATH  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15(8):321–326. doi:10.1016/S0169-5347(00)01902-9

  • Orr HA (2000) The rate of adaptation in asexuals. Genetics 155(2):961–968

    Google Scholar 

  • Park SC, Krug J (2013) Rate of adaptation in sexuals and asexuals: a solvable model of the Fisher–Muller effect. Genetics 195(3):941–955

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Regoes RR, Hamblin S, Tanaka MM (2013) Viral mutation rates: modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed. Proc R Soc Lond B Biol Sci 280(1750):2012–2047

    Google Scholar 

  • Shirreff G, Pellis L, Laeyendecker O, Fraser C (2011) Transmission selects for HIV-1 strains of intermediate virulence: a modelling approach. PLoS Comput Biol 7(10):e1002185. doi:10.1371/journal.pcbi.1002185

  • Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: separating causes from consequences. BioEssays 22(12):1057–1066

    Article  Google Scholar 

  • Soetaert K, Petzoldt T, Setzer RW (2010) Solving differential equations in R Package deSolve. J Stat Softw 33(9):1–25. http://www.jstatsoft.org/v33/i09

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Turelli M, Barton NH (1994) Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics 138(3):913–941

Download references

Acknowledgments

The authors thank Colleen Webb for valuable feedback. The authors also thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support through the Undergraduate Student Research Awards and Discovery grants programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Birch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 26 KB)

Appendices

Appendix 1: General Mutation Spectrum

Generally, one could write (1b) as

$$\begin{aligned} \frac{\partial i}{\partial t} = [S(t)\beta (\alpha , t) - (\alpha + \mu )] i(\alpha , t) - mi(\alpha ,t)\,+\,m\int _0^\infty K\left( \alpha ^\prime ,\alpha \right) i\left( \alpha ^\prime ,t\right) ~\hbox {d}\alpha ^\prime , \end{aligned}$$
(32)

where m is the mutation rate (although a different mutation rate than D defined below) and \(K(\alpha ^\prime , \alpha )\) is the mutation spectrum (the rate of mutation from strain \(\alpha ^\prime \) to \(\alpha \)). \(K(\alpha ^\prime , \alpha )\) must have the following properties:

  1. (i)

    \(K(\alpha ^\prime ,\alpha ) \ge 0\) for all \(\alpha ^\prime ,\alpha \in [0,\infty )\)

  2. (ii)

    \(\int _0^\infty K(\alpha ^\prime ,\alpha )~d\alpha = 1\).

Property (i) follows from probabilities of mutation being non-negative and property (ii) ensures that mutation cannot change the total number of infectious individuals. This mutation spectrum can accommodate very general models of mutation (even among discrete phenotypes through the use of Dirac delta functions). Our diffusion model of mutation follows from this general spectrum under the assumptions that \(K(\alpha ^\prime , \alpha )\) is symmetric in the sense that

$$\begin{aligned} K\left( \alpha ^\prime , \alpha \right) = K\left( \alpha , \alpha ^\prime \right) \end{aligned}$$
(33)

and for each \(\alpha \), \(K(\alpha ^\prime , \alpha )\) is narrowly peaked such that

$$\begin{aligned}&\int _0^\infty K\left( \alpha ^\prime ,\alpha \right) i\left( \alpha ^\prime ,t\right) ~d\alpha ^\prime \nonumber \\&\quad \approx \int _0^\infty K\left( \alpha ^\prime ,\alpha \right) \left[ i\left( \alpha , t\right) + \frac{\partial i}{\partial \alpha }\left( \alpha ^\prime - \alpha \right) + \frac{1}{2}\frac{\partial ^2 i}{\partial \alpha ^2}\left( \alpha ^\prime - \alpha \right) ^2 \right] ~\hbox {d}\alpha ^\prime . \end{aligned}$$
(34)

Using (33) and (34), as well as applying property (ii), in (32) we obtain

$$\begin{aligned} \frac{\partial i}{\partial t} = [S(t)\beta (\alpha , t) - (\alpha + \mu )] i(\alpha , t) + D(\alpha ) \frac{\partial ^2 i}{\partial \alpha ^2}, \end{aligned}$$
(35)

where \(D(\alpha ) \equiv (m/2)\int _0^\infty (\alpha ^\prime - \alpha )^2 K(\alpha ^\prime , \alpha )~\hbox {d}\alpha ^\prime \). Finally, we obtain (1b) by assuming that \(D(\alpha )\) is constant for all \(\alpha \).

Appendix 2: Derivation of Second-Order Moment Equations

Here we wish to approximate the full model, given by (1), by characterizing the infectious distribution, \(i(\alpha , t)\), according to its first two moments. In addition, we shall assume that \(i(\alpha , t)\) is normally distributed in \(\alpha \) for every \(t \ge 0\) and that \(i(0, t) \approx 0\) (i.e. dynamics occur far from the boundary).

The mean virulence, \(\left\langle \alpha \right\rangle \), is given by

$$\begin{aligned} \left\langle \alpha \right\rangle = \frac{\int _0^\infty \alpha i(\alpha , t)~\hbox {d}\alpha }{\int _0^\infty i(\alpha , t)~\hbox {d}\alpha }, \end{aligned}$$

and hence its time derivative is

$$\begin{aligned} \frac{\hbox {d}\left\langle \alpha \right\rangle }{\mathrm{d}t}&= \frac{\int _0^\infty \alpha \frac{\partial i}{\partial t}~\hbox {d}\alpha }{\int _0^\infty i(\alpha , t)~\mathrm{d}\alpha } - \frac{\int _0^\infty \alpha i(\alpha , t)~\hbox {d}\alpha }{\left[ \int _0^\infty i(\alpha , t)~\mathrm{d}\alpha \right] ^2} \int _0^\infty \frac{\partial i}{\partial t}~\hbox {d}\alpha \\&= \frac{\int _0^\infty \left( \alpha - \left\langle \alpha \right\rangle \right) \frac{\partial i}{\partial t}~\hbox {d}\alpha }{\int _0^\infty i(\alpha , t)~\mathrm{d}\alpha }. \end{aligned}$$

We now substitute \(\partial i/\partial t\) for the expression in (1b) and simplify in order to obtain

$$\begin{aligned} \frac{\hbox {d}\left\langle \alpha \right\rangle }{\mathrm{d}t} = S(t)\left\langle (\alpha - \left\langle \alpha \right\rangle )\beta (\alpha , t) \right\rangle - {\sigma ^2_\alpha }(t), \end{aligned}$$
(36)

where \({\sigma ^2_\alpha }= \left\langle \alpha ^2 \right\rangle - \left\langle \alpha \right\rangle ^2\) is the variance of the virulence in the infectious population. We can now also take a Taylor expansion of \(\beta (\alpha , t)\) about \(\left\langle \alpha \right\rangle \) to second order in \(\alpha \),

$$\begin{aligned} \left\langle (\alpha - \left\langle \alpha \right\rangle )\beta (\alpha , t) \right\rangle&= \Bigg \langle (\alpha - \left\langle \alpha \right\rangle ) \beta (\left\langle \alpha \right\rangle ,t) + (\alpha - \left\langle \alpha \right\rangle )^2\beta _\alpha (\left\langle \alpha \right\rangle ,t)\\&\qquad + \frac{1}{2}(\alpha - \left\langle \alpha \right\rangle )^3 \beta _{\alpha \alpha }(\left\langle \alpha \right\rangle , t) \Bigg \rangle = {\sigma ^2_\alpha }\beta _\alpha (\left\langle \alpha \right\rangle ,t), \end{aligned}$$

where the \((\alpha - \left\langle \alpha \right\rangle )^3\) term averages to zero since we have assumed normality (normal distributions have no skew). Therefore, the equation for the time evolution of \(\left\langle \alpha \right\rangle \) is

$$\begin{aligned} \frac{\hbox {d}\left\langle \alpha \right\rangle }{\mathrm{d}t}&= \sigma ^2_\alpha \left[ S\beta _\alpha (\left\langle \alpha \right\rangle , t) - 1 \right] , \end{aligned}$$
(37)

as stated in (5c).

The time evolution for the variance is derived in a similar fashion. First note that, similar to the time derivative of \(\left\langle \alpha \right\rangle \),

$$\begin{aligned} \frac{\hbox {d}\left\langle \alpha ^2 \right\rangle }{\mathrm{d}t} = \frac{\int _0^\infty \left( \alpha ^2 - \left\langle \alpha ^2 \right\rangle \right) \frac{\partial i}{\partial t}~\hbox {d}\alpha }{\int _0^\infty i(\alpha , t)~\mathrm{d}\alpha }, \end{aligned}$$

which, upon substitution of (1b), simplifies to

$$\begin{aligned} \frac{\hbox {d}\left\langle \alpha ^2 \right\rangle }{\mathrm{d}t} = S(t)\left\langle \left( \alpha ^2 - \left\langle \alpha ^2 \right\rangle \right) \beta (\alpha , t) \right\rangle - \left\langle \alpha ^3 \right\rangle + \left\langle \alpha \right\rangle \left\langle \alpha ^2 \right\rangle + 2D. \end{aligned}$$

This result allows us to easily compute the time derivative of \({\sigma ^2_\alpha }\),

$$\begin{aligned} \frac{\hbox {d}{\sigma ^2_\alpha }}{\mathrm{d}t}&= \frac{\hbox {d}\left\langle \alpha ^2 \right\rangle }{\mathrm{d}t} - 2\left\langle \alpha \right\rangle \frac{\hbox {d}\left\langle \alpha \right\rangle }{\mathrm{d}t} \\&= S(t)\left\langle \left( \alpha ^2 - \left\langle \alpha ^2 \right\rangle \right) \beta (\alpha , t) \right\rangle - \left\langle \alpha ^3 \right\rangle + \left\langle \alpha \right\rangle \left\langle \alpha ^2 \right\rangle \\&\quad + 2D - 2\left\langle \alpha \right\rangle S(t)\left\langle (\alpha - \left\langle \alpha \right\rangle )\beta (\alpha , t) \right\rangle + 2\left\langle \alpha \right\rangle {\sigma ^2_\alpha }(t) \\&= S(t)\left\langle \left( \alpha ^2 - \left\langle \alpha ^2 \right\rangle - 2\left\langle \alpha \right\rangle \alpha + 2\left\langle \alpha \right\rangle ^2 \right) \beta (\alpha , t) \right\rangle \\&\quad - \left( \left\langle \alpha ^3 \right\rangle - 3\left\langle \alpha \right\rangle \left\langle \alpha ^2 \right\rangle + 2\left\langle \alpha \right\rangle ^3 \right) + 2D \\&= S(t)\left\langle \left( \alpha - \left\langle \alpha \right\rangle \right) ^2\beta (\alpha , t) \right\rangle - S(t){\sigma ^2_\alpha }\left\langle \beta (\alpha , t) \right\rangle \\&\quad - \left( \left\langle \alpha ^3 \right\rangle - 3\left\langle \alpha \right\rangle \left\langle \alpha ^2 \right\rangle + 2\left\langle \alpha \right\rangle ^3 \right) + 2D. \end{aligned}$$

The term in brackets is the third cumulant of the infectious distribution and therefore is zero under our assumption of normality. We again expand \(\beta (\alpha , t)\) to second order in \(\alpha \). From this we obtain

$$\begin{aligned} \frac{\hbox {d}{\sigma ^2_\alpha }}{\mathrm{d}t}&= \frac{1}{2}S(t)\beta _{\alpha \alpha }(\left\langle \alpha \right\rangle , t)\left( \left\langle (\alpha - \left\langle \alpha \right\rangle )^4 \right\rangle - \left( {\sigma ^2_\alpha }\right) ^2 \right) + 2D. \end{aligned}$$

Finally, we use the fact that the fourth central moment is equal to the sum of the fourth cumulant (which again is zero by the assumption of normality) and three times the variance squared. This gives the result quoted in (5d),

$$\begin{aligned} \frac{\hbox {d}\sigma ^2_\alpha }{\mathrm{d}t}&= \left[ \sigma ^2_\alpha \right] ^2 S \beta _{\alpha \alpha }(\left\langle \alpha \right\rangle , t) + 2D. \end{aligned}$$
(38)

Equations (5a) and (5b) are obtained directly from the full model defined in (1) by simply expanding \(\beta (\alpha , t)\) to second order as in the above two cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birch, M., Bolker, B.M. Evolutionary Stability of Minimal Mutation Rates in an Evo-epidemiological Model. Bull Math Biol 77, 1985–2003 (2015). https://doi.org/10.1007/s11538-015-0112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0112-6

Keywords

Navigation