Skip to main content

Advertisement

Log in

Modeling the Role of TGF-β in Regulation of the Th17 Phenotype in the LPS-Driven Immune System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Airway exposure levels of lipopolysaccharide (LPS) are known to determine type I versus type II helper T cell induced experimental asthma. While low doses of LPS derive Th2 inflammatory responses, high (and/or intermediate) LPS levels induce Th1- or Th17-dominant responses. The present paper develops a mathematical model of the phenotypic switches among three Th phenotypes (Th1, Th2, and Th17) in response to various LPS levels. In the present work, we simplify the complex network of the interactions between cells and regulatory molecules. The model describes the nonlinear cross-talks between the IL-4/Th2 activities and a key regulatory molecule, transforming growth factor β (TGF-β), in response to high, intermediate, and low levels of LPS. The model characterizes development of three phenotypes (Th1, Th2, and Th17) and predicts the onset of a new phenotype, Th17, under the tight control of TGF-β. Analysis of the model illustrates the mono-, bi-, and oneway-switches in the key regulatory parameter sets in the absence or presence of time delays. The model also predicts coexistence of those phenotypes and Th1- or Th2-dominant immune responses in a spatial domain under various biochemical and bio-mechanical conditions in the microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akbari, O., Freeman, G. J., Meyer, E. H., Greenfield, E. A., Chang, T. T., Sharpe, A. H., Berry, G., DeKruyff, R. H., & Umetsu, D. T. (2002). Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med., 8, 1024–1032.

    Article  Google Scholar 

  • Akdis, M., & Akdis, C. A. (2007). Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol., 119, 780–791.

    Article  Google Scholar 

  • Akdis, C. A., Blesken, T., Akdis, M., Wüthrich, B., & Blaser, K. (1998). Role of interleukin 10 in specific immunotherapy. J. Clin. Invest., 102, 98–106.

    Article  Google Scholar 

  • Al-Muhsen, S., Letuve, S., Vazquez-Tello, A., Pureza, M., Al-Jahdali, H., Bahammam, A., Hamid, Q., & Halwani, R. (2013). Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils. Respir. Res., 14, 34.

    Article  Google Scholar 

  • Alarcón, T., Byrne, H., & Maini, P. (2004). Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol., 85, 451–472.

    Article  Google Scholar 

  • Alcorn, J. F., Crowe, C. R., & Kolls, J. K. (2010). TH 17 cells in asthma and COPD. Annu. Rev. Physiol., 72, 495–516.

    Article  Google Scholar 

  • Annunziato, F., Cosmi, L., & Romagnani, S. (2010). Human and murine Th17. Curr. Opin. HIV AIDS, 5, 114–119.

    Article  Google Scholar 

  • Baek, K., Cho, J., Rosenthal, P., Alexander, L., Nizet, V., & Broide, D. (2013). Hypoxia potentiates allergen induction of HIF-1α, chemokines, airway inflammation, TGF-β1, and airway remodeling in a mouse model. Clin. Immunol., 147, 27–37.

    Article  Google Scholar 

  • Behn, U., Dambeck, H., & Metzner, G. (2001). Modeling Th1–Th2 regulation, allergy, and hyposensitization. In Dynamical modeling in biotechnology, Chap. 11 (pp. 227–243). Singapore: World Scientific.

    Google Scholar 

  • Bochner, B. S., Undem, B. J., & Lichtenstein, L. M. (1994). Immunological aspects of allergic asthma. Annu. Rev. Immunol., 12, 295–335.

    Article  Google Scholar 

  • Borish, L. C., Nelson, H. S., Lanz, M. J., Claussen, L., Whitmore, J. B., Agosti, J. M., & Garrison, L. (1999). Interleukin-4 receptor in moderate atopic asthma. a phase I/II randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med., 160, 1816–1823.

    Article  Google Scholar 

  • Brown, D. R. (1999). Dependence of neurones on astrocytes in a coculture system renders neurones sensitive to transforming growth factor beta1-induced glutamate toxicity. J. Neurochem., 72, 943–953.

    Article  Google Scholar 

  • Busse, W. W., & Lemanske, J. R. F. (2001). Asthma. N. Engl. J. Med., 344, 350–362.

    Article  Google Scholar 

  • Callard, R. E., & Yates, A. J. (2005). Immunology and mathematics: crossing the divide. Immunology, 115, 21–33.

    Article  Google Scholar 

  • Carneiro, J., Stewart, J., Coutinho, A., & Coutinho, G. (1995). The ontogeny of class-regulation of CD4+ T lymphocte populations. Int. Immunol., 7, 1265–1277.

    Article  Google Scholar 

  • Chen, W., Jin, W., Hardegen, N., jian Lei, K., Li, L., Marinos, N., McGrady, G., & Wahl, S. M. (2003). Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp 3. J. Exp. Med., 198, 1875–1886.

    Article  Google Scholar 

  • Cho, S. H., Stanciu, L. A., Holgate, S. T., & Johnston, S. L. (2005). Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma. Am. J. Respir. Crit. Care Med., 171, 224–230.

    Article  Google Scholar 

  • Cosmi, L., Maggi, L., Santarlasci, V., Capone, M., Cardilicchia, E., Frosali, F., Querci, V., Angeli, R., Matucci, A., Fambrini, M., Liotta, F., Parronchi, P., Maggi, E., Romagnani, S., & Annunziato, F. (2010). Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol., 125, 222–230.e4.

    Article  Google Scholar 

  • Cosmi, L., Liotta, F., Maggi, E., Romagnani, S., & Annunziato, F. (2011). Th17 cells: new players in asthma pathogenesis. Allergy, 66, 989–998.

    Article  Google Scholar 

  • Cutz, E., Levison, H., & Cooper, D. M. (1978). Ultrastructure of airways in children with asthma. Histopathology, 2, 407–421.

    Article  Google Scholar 

  • Dong, C. (2006). Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat. Rev. Immunol., 6, 329–333.

    Article  Google Scholar 

  • Dong, C. (2008). TH 17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol., 8, 337–348.

    Article  Google Scholar 

  • Eisenbarth, S. C., Piggott, D. A., Huleatt, J. W., Visintin, I., Herrick, C. A., & Bottomly, K. (2002). Lipopolysaccharide-enhanced, toll-like receptor 4–dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med., 196, 1645–1651.

    Article  Google Scholar 

  • Eisenberg, M., Kim, Y., Li, R., Ackerman, W., Kniss, D., & Friedman, A. (2011). Modeling the effects of myoferlin on tumor cell invasion. Proc. Natl. Acad. Sci. USA, 108, 20078–20083.

    Article  Google Scholar 

  • Elliott, R. L., & Blobe, G. C. (2005). Role of transforming growth factor beta in human cancer. J. Clin. Oncol., 23, 2078–2093.

    Article  Google Scholar 

  • Fishman, M. A., & Perelson, A. S. (1993). Modeling T cell-antigen presenting cell interactions. J. Theor. Biol., 160, 311–342.

    Article  Google Scholar 

  • Fishman, M. A., & Perelson, A. S. (1994). Th1/2 cross-regulation. J. Theor. Biol., 170, 25–56.

    Article  Google Scholar 

  • Fishman, M. A., & Perelson, A. S. (1999). Th1/Th2 differentiation and cross regulation. Bull. Math. Biol., 61, 403–436.

    Article  MATH  Google Scholar 

  • Francis, K., & Palsson, B. O. (1997). Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. Proc. Natl. Acad. Sci. USA, 94, 12258–12262.

    Article  Google Scholar 

  • Gereda, J. E., Leung, D. Y., Thatayatikom, A., Streib, J. E., Price, M. R., Klinnert, M. D., & Liu, A. H. (2000). Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet, 355, 1680–1683.

    Article  Google Scholar 

  • Goodhill, G. J. (1997). Diffusion in axon guidance. Eur. J. Neurosci., 9, 1414–1421.

    Article  Google Scholar 

  • Gorelik, L., & Flavell, R. A. (2000). Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity, 12, 171–181.

    Article  Google Scholar 

  • Gorelik, L., Constant, S., & Flavell, R. A. (2002). Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med., 195, 1499–1505.

    Article  Google Scholar 

  • Gould, H. J., Sutton, B. J., Beavil, A. J., Beavil, R. L., McCloskey, N., Coker, H. A., Fear, D., & Smurthwaite, L. (2003). The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol., 21, 579–628.

    Article  Google Scholar 

  • Groß, F., Metznerb, G., & Behn, U. (2011). Mathematical modelling of allergy and specific immunotherapy: Th1–Th2–Treg interactions. J. Theor. Biol., 269, 70–78.

    Article  MATH  Google Scholar 

  • Grunig, G., Warnock, M., Wakil, A. E., Venkayya, R., Brombacher, F., Rennick, D. M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., & Corry, D. B. (1998). Requirement for IL-13 independently of IL-4 in experimental asthma. Science, 282, 2261–2263.

    Article  Google Scholar 

  • Gutcher, I., & Becher, B. (2007). APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest., 117, 1119–1127.

    Article  Google Scholar 

  • Hamid, Q., & Tulic, M. (2009). Immunobiology of asthma. Annu. Rev. Physiol., 71, 489–507.

    Article  Google Scholar 

  • Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M., & Weaver, C. T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 6, 1123–1132.

    Article  Google Scholar 

  • Harrington, L. E., Mangan, P. R., & Weaver, C. T. (2006). Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr. Opin. Immunol., 18, 349–356.

    Article  Google Scholar 

  • Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M., & O’Garra, A. (1995). The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J. Exp. Med., 182, 1579–1584.

    Article  Google Scholar 

  • Jansson, A., Harlen, M., Karlsson, S., Nilsson, P., & Cooley, M. (2007). 3D computation modelling of the influence of cytokine secretion on Th-cell development suggests that negative selection (inhibition of Th1 cells) is more effective than positive selection by IL-4 for Th2 cell dominance modelling Th cell selection. Immunol. Cell Biol., 85, 189–196.

    Google Scholar 

  • Jiang, H., & Chess, L. (2004). An integrated view of suppressor T cell subsets in immunoregulation. J. Clin. Invest., 114, 1198–1208.

    Article  Google Scholar 

  • Kidd, P. (2003). Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev., 8, 223–246.

    Google Scholar 

  • Kim, Y., & Friedman, A. (2010). Interaction of tumor with its microenvironment: a mathematical model. Bull. Math. Biol., 72, 1029–1068.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, Y., & Lim, S. (2010). The role of the microenvironment in tumor invasion. In 2009 Proceedings of the fourth SIAM conference on mathematics for industry (MI09) (pp. 84–92).

    Chapter  Google Scholar 

  • Kim, Y., & Othmer, H. (2014). A hybrid model of tumor-stromal interactions in breast cancer. Bull. Math. Biol., 75, 1304–1350. doi:10.1007/s11538-012-9787-0.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, Y. K., Oh, S. Y., Jeon, S. G., Park, H. W., Lee, S. Y., Chun, E. Y., Bang, B., Lee, H. S., Oh, M. H., Kim, Y. S., Kim, J. H., Gho, Y. S., Cho, S. H., Min, K. U., Kim, Y. Y., & Zhu, Z. (2007a). Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J. Immunol., 178, 5375–5382.

    Article  Google Scholar 

  • Kim, Y., Stolarska, M., & Othmer, H. G. (2007b). A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Math. Models Methods Appl. Sci., 17, 1773–1798.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, Y., Hong, S., Choi, J., Shin, T., Moon, H., Choi, E., Jeon, S., Oh, S., Gho, Y., Zhu, Z., & Kim, Y. (2009). Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways. J. Immunol., 183, 5113–5120.

    Article  Google Scholar 

  • Kim, Y., Stolarska, M., & Othmer, H. (2011). The role of the microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol., 106, 353–379.

    Article  Google Scholar 

  • Kim, Y., Lee, S., Kim, Y. S., Lawler, S., Gho, Y. S., Kim, Y. K., & Hwang, H. J. (2014). Regulation of Th1/Th2 cells in asthma development: a mathematical model. Math. Biosci. Eng., 10(4), 1095–1133.

    MathSciNet  MATH  Google Scholar 

  • Kong, F.-M., Anscher, M. S., Murase, T., Abbott, B. D., Iglehart, J. D., & Jirtle, R. L. (1995). Elevated plasma transforming growth factor-β 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann. Surg., 222, 155–162.

    Article  Google Scholar 

  • Krouskop, T. A., Wheeler, T. M., Kallel, F., Garra, B. S., & Hall, T. (1998). Elastic moduli of breast and prostate tissues under compression. Ultrason. Imag., 20, 260–274.

    Article  Google Scholar 

  • Kudlow, J. E., Cheung, C.-Y. M., & Bjorge, J. D. (1986). Epidermal growth factor stimulates the synthesis if its own receptor in a human breast cancer cell line. J. Biol. Chem., 261, 4134–4138.

    Google Scholar 

  • Kunz-Schughart, L. A., Wenninger, S., Neumeier, T., Seidl, P., & Knuechel, R. (2003). Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-beta 1. Am. J. Physiol., Cell Physiol., 284, C209–C219.

    Article  Google Scholar 

  • Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T., Kastelein, R. A., & Cua, D. J. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med., 201, 233–240.

    Article  Google Scholar 

  • Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., & Weaver, C. T. (2009). Late developmental plasticity in the T helper 17 lineage. Immunity, 30, 92–107.

    Article  Google Scholar 

  • Lev Bar-or, L., & Segel, L. A. (1998). On the role of a possible dialogue between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease. J. Theor. Biol., 190, 161–178.

    Article  Google Scholar 

  • Lloyd, C. M., & Hawrylowicz, C. M. (2009). Regulatory T cells in asthma. Immunity, 31, 438–449.

    Article  Google Scholar 

  • Maddur, M. S., Miossec, P., Kaveri, S. V., & Bayry, J. (2012). Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol., 181, 8–18.

    Article  Google Scholar 

  • Magnan, A. O., Mély, L. G., Camilla, C. A., Badier, M. M., Montero-Julian, F. A., Guillot, C. M., Casano, B. B., Prato, S. J., Fert, V., Bongrand, P., & Vervloet, D. (2000). Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma. increased IFN-gamma-producing CD 8(+) T cells in asthma. Am. J. Respir. Crit. Care Med., 161, 1790–1796.

    Article  Google Scholar 

  • Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178–196.

    Article  MathSciNet  Google Scholar 

  • MATLAB (2009). Version 7.9 (R2009b). The MathWorks Inc., Natick, Massachusetts.

  • Michel, O., Ginanni, R., Duchateau, J., Vertongen, F., Bon, B., & Sergysels, R. (1991). Domestic endotoxin exposure and clinical severity of asthma. Clin. Exp. Allergy, 21, 441–448.

    Article  Google Scholar 

  • Moon, H. G., Tae, Y. M., Kim, Y. S., Jeon, S. G., Oh, S. Y., Gho, Y. S., Zhu, Z., & Kim, Y. K. (2010). Conversion of Th17-type into Th 2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy, 65, 1093–1103.

    Google Scholar 

  • Morel, B. F., Kalagnanam, J., & Morel, P. A. (1992). Mathematical modelling of th1–th2 dynamics. In G. W. A. S. Perelson (Ed.), Theoretical and experimental insights into immunology, chapter H66 Nato ASI (pp. 171–189). Berlin: Springer.

    Chapter  Google Scholar 

  • Mosmann, T. R., & Coffman, R. L. (1989). TH1 and TH 2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol., 7, 145–173.

    Article  Google Scholar 

  • Mosmann, T. R., & Sad, S. (1996). The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today, 17, 138–146.

    Article  Google Scholar 

  • Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. (1986). Two types of murine helper T cell clone. I. definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 136, 2348–2357.

    Google Scholar 

  • Muraille, E., Leo, O., & Kaufman, M. (1995). The role of antigen presentation in the regulation of class-specific (Th1/Th2) immune responses. J. Biol. Syst., 3, 397–408.

    Article  Google Scholar 

  • Murphy, A. (2007). Asthma in focus. In Focus series, London: Pharmaceutical Press.

    Google Scholar 

  • Murphy, K. M., Travers, P., & Walport, M. (2007). Janeway’s immunobiology (7th ed.). New York: Garland.

    Google Scholar 

  • Nakagiri, T., Inoue, M., Minami, M., Shintani, Y., & Okumura, M. (2012). Immunology mini-review: the basics of TH 17 and interleukin-6 in transplantation. Transplant. Proc., 44, 1035–1040.

    Article  Google Scholar 

  • Neurath, M. F., Finotto, S., & Glimcher, L. H. (2002). The role of Th1/Th2 polarization in mucosal immunity. Nat. Med., 8, 567–573.

    Article  Google Scholar 

  • Oh, K., Seo, M. W., Lee, G. Y., Byoun, O. J., Kang, H. R., Cho, S. H., & Lee, D. S. (2013). Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response. Respir. Res., 14, 35.

    Article  Google Scholar 

  • Paszek, M. J., & Weaver, V. M. (2004). The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia, 9, 325–342. Review.

    Article  Google Scholar 

  • Ray, A., Khare, A., Krishnamoorthy, N., Qi, Z., & Ray, P. (2010). Regulatory T cells in many flavors control asthma. Mucosal Immunol., 3, 216–229.

    Article  Google Scholar 

  • Richter, J., Metzner, G., & Behn, U. (2002). Mathematical modelling of venom immunotherapy. J. Theor. Med., 4, 119–132.

    Article  MATH  Google Scholar 

  • Robinson, D. S. (2009). Regulatory T cells and asthma. Clin. Exp. Allergy, 39, 1314–1323.

    Article  Google Scholar 

  • Romagnani, S. (1997). Atopic allergy and other hypersensitivities interactions between genetic susceptibility, innocuous and/or microbial antigens and the immune system. Curr. Opin. Immunol., 9, 773–775.

    Article  Google Scholar 

  • Sakaguchi, S. (2000). Regulatory T cells: key controllers of immunologic self-tolerance. Cell, 101, 455–458.

    Article  Google Scholar 

  • Seder, R. A., & Paul, W. E. (1994). Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol., 12, 635–673.

    Article  Google Scholar 

  • Smyth, R. L. (2002). Asthma: a major pediatric health issue. Respir. Res., 3 Suppl 1, S3–S7.

    Article  Google Scholar 

  • Stolarska, M., Kim, Y., & Othmer, H. G. (2009). Multiscale models of cell and tissue dynamics. Philos. Trans. R. Soc. Lond. A, 367, 3525–3553.

    Article  MathSciNet  MATH  Google Scholar 

  • Till, S., Durham, S., Dickason, R., Huston, D., Bungre, J., Walker, S., Robinson, D., Kay, A. B., & Corrigan, C. (1997). IL-13 production by allergen-stimulated T cells is increased in allergic disease and associated with IL-5 but not IFN-gamma expression. Immunology, 91, 53–57.

    Article  Google Scholar 

  • Vogel, R., & Behn, U. (2007). Th1–Th2 regulation and allergy: bifurcation analysis of the non-autonomous system. In A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, & H. Metz (Eds.), Mathematical modeling of biological systems, volume II, modeling and simulation in science, engineering and technology (pp. 145–155). Cambridge: Birkhäuser Boston.

    Google Scholar 

  • Wan, Y. Y. (2010). Multi-tasking of helper T cells. Immunology, 130, 166–171.

    Article  Google Scholar 

  • Wang, Y.-H., Voo, K. S., Liu, B., Chen, C.-Y., Uygungil, B., Spoede, W., Bernstein, J. A., Huston, D. P., & Liu, Y.-J. (2010). A novel subset of CD4+ T H 2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med., 207, 2479–2491.

    Article  Google Scholar 

  • Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., & Donaldson, D. D. (1998). Interleukin-13: central mediator of allergic asthma. Science, 282, 2258–2261.

    Article  Google Scholar 

  • Wills-Karp, M., Santeliz, J., & Karp, C. L. (2001). The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol., 1, 69–75.

    Article  Google Scholar 

  • Yang, Y., Zhang, H.-L., & Wu, J. (2010). Role of T regulatory cells in the pathogenesis of asthma. Chest, 138, 1282–1283.

    Article  Google Scholar 

  • Yates, A., Bergmann, C., Van Hemmen, J. L., Stark, J., & Callard, R. (2000). Cytokine-modulated regulation of helper T cell populations. J. Theor. Biol., 206, 539–560.

    Article  Google Scholar 

  • Yates, A., Callard, R., & Stark, J. (2004). Combining cytokine signalling with t-bet and gata-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol., 231, 181–196.

    Article  MathSciNet  Google Scholar 

  • Yazdanbakhsh, M., Kremsner, P. G., & van Ree, R. (2002). Allergy, parasites, and the hygiene hypothesis. Science, 296, 490–494.

    Article  Google Scholar 

  • Zhao, Y., Yang, J., dong Gao, Y., & Guo, W. (2010). Th17 immunity in patients with allergic asthma. Int. Arch. Allergy Immunol., 151, 297–307.

    Article  Google Scholar 

  • Zheng, S., Wang, J., Koss, M., Quismorio, F., Gray, J., & Horwitz, D. (2004). CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol., 172, 1531–1539.

    Article  Google Scholar 

  • Zhou, L., Ivanov, I. I., Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D. E., Leonard, W. J., & Littman, D. R. (2007). IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol., 8, 967–974.

    Article  Google Scholar 

Download references

Acknowledgements

Y. Kim is supported by the National Science Foundation upon agreement 112050 (DMS-1135663), the Rackham Grant at University of Michigan, the Basic Science Research Program through the National Research Foundation of Korea by the Ministry of Education and Technology (2012R1A1A1043340). H.J. Hwang is supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0008127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjin Kim.

Appendices

Appendix A: Parameter Estimation and Nondimensionalization

1.1 A.1 Parameter Estimation

Some of the parameters in our model are estimated in the following:

Diffusion coefficient of IL-4/Th2 module (d H ): From Francis and Palsson (1997), Jansson et al. (2007), we take d H =0.0036 mm2 h−1.

Diffusion coefficient of TGF-β (d G ): From Brown (1999), Goodhill (1997), we take d G =0.36 mm2 h−1.

LPS injection amount (α): In an experimental study, Kim et al. (2007a) found that a high (100 μg) and low (0.1 μg) dose of LPS induced Th1- and Th2-inflammatory responses, respectively. Therefore, there are 1000-fold differences in LPS amounts and in order to take this into account in our model, we take α=0.1–100 μg.

Decay/death rate of IL-4/ Th2 module (μ H ): From Borish et al. (1999), Jansson et al. (2007), Murphy (2007), we take μ H =0.48 h−1.

Decay rate of TGF-β G ): From Kim and Friedman (2010), Kudlow et al. (1986), we take μ G =0.4 h−1.

1.2 A.2 Nondimensionalization

Table 1 lists reference values. We take the characteristic length scale L=5.0 mm. We determine the reference values for H, G as follows:

Table 1 Reference variables and estimated values used in the model

IL-4/Th2 module (H ): For the reference value of IL-4/Th2 module, we take the concentration of IL-4 in the experiments in Kim et al. (2007a): H =20 pg cm−3.

TGF-β (G ): In a study of the suppressive effect of Tregs with IL-2 and TGF-β on a Lupus-like syndrome, Zheng et al. (2004) used Nylon wool nonadherent T-enriched cells (1.5×106 ml) and similar numbers of irradiated adherent, non-T cells with or without TGF-β1 ((0.1–10) ng/ml) and low dose rhuIL-2 (10 U/ml). In a study of conversion of peripheral CD4+CD25 Naive T cells to CD4+CD25+ Treg cells using TGF-β (Chen et al. 2003), CD25+ or CD4+CD25 cells were stimulated with platebound anti-CD3 (2 μg/ml) and soluble anti-CD28 (2 μg/ml) in the absence or presence of 0.02, 0.2, 2, or 20 ng/ml TGF-β1, 100 U/ml IL-2 or 1 ng/ml IL-10. We take G =11 ng/cm3.

We nondimensionalize the variables and parameters in the partial differential equations (6)–(7) as follows:

$$\begin{aligned} T =& \mu_G t,\qquad \widetilde{H} = \frac{H}{H^*},\qquad \widetilde{G} = \frac{G}{G^*},\qquad D_H = \frac{d_H}{\mu_G L^2},\qquad D_G = \frac{d_G}{\mu_G L^2}, \\ f(\alpha) =& \frac{r(\alpha)}{\mu_G H^*},\qquad \mu= \frac{\mu_H}{\mu_G}, \qquad\beta= \frac{k_1}{\mu_G H^*},\qquad K_H = \frac{k_2}{H^*}, \\ \gamma =& \frac{k_3 G^*}{(H^*)^n},\qquad \delta= \frac{\lambda_1}{\mu_G G^*},\qquad \zeta= \frac{\lambda_2 H^*}{\mu_G G^*}. \end{aligned}$$
(28)

By dropping tilde and replacing T with t again in the notation, we get the governing equations in dimensionless form

$$\begin{aligned} \frac{\partial {H}}{\partial t} &= D_H \Delta H + f(\alpha) + \frac{\beta H^n}{K_H^n + H^n + \gamma G} - \mu H, \end{aligned}$$
(29)
$$\begin{aligned} \frac{\partial {G}}{\partial t} &= D_G \Delta G + \delta + \frac{\zeta\alpha^m}{K_\alpha^m + \alpha^m} H - G. \end{aligned}$$
(30)

Dimensionless parameters are listed in Table 2.

Table 2 Parameters used in the model

Appendix B: Sensitivity Analysis

In our model, there are a number of parameters for which no experimental data are known. These parameters may significantly affect the computational results and conclusions. In order to see how sensitive the different phenotypes are to all parameters (α, β, K H , γ, μ, δ, ζ, K α ) at t=100, we have performed sensitivity analysis. We have chosen a range for each of these parameters and divided each range into 2000 intervals of uniform length. For each of the eight parameters of interest, a partial rank correlation coefficient (PRCC) value with a range between −1 and 1 is calculated. The sign of PRCC determines whether an increase in the parameter value will increase (+) or decrease (−) the concentration of IL-4 (H) and TGF-β (G) at a given time. The sensitivity analysis was carried out using the method from Marino et al. (2008) and MATLAB files available from the website of Denise Kirschner’s Lab: http://malthus.micro.med.umich.edu/lab/usadata/.

Figure 21 shows the sensitivity analysis results for IL-4 (H) and TGF-β (G) concentrations at t=100. We calculate PRCC values and associated p-value (pv) for eight perturbed parameters (α, β, K H , γ, μ, δ, ζ, K α ) for both low (0.01<α<1) and high (10<α<100) LPS levels. Tables 3 and 4 summarize the results of the sensitivity analysis in terms of H and G at t=1, 10, 100 for the ODE model (12)–(13). That is, we compute PRCC values for H(t) at time t=1,10,100. The PRCC values for TGF-β (G(t)) were calculated in a similar fashion.

Fig. 21
figure 21

Sensitivity analysis for local dynamics: general Latin hypercube sampling (LHS) scheme and a partial rank correlation coefficient (PRCC) performed for both low (0.01<α<1) and high (10<α<100) LPS levels on the ODE model (12)–(13). The reference output is the variable H(t), G(t) at time t=100. Eight parameters (α, β, K H , γ, μ, δ, ζ, K α ) were taken as the parameters of interest. PRCC values were calculated for a specific sampled values of the eight parameters while other parameters are fixed. The parameter β (α, μ) is shown to be strongly positively (negatively) correlated with the IL-4 level at time t=100 for low LPS level (0.01<α<1), that is, an increase in β (α, μ) results in a significant increase (decrease) in the IL-4 level at t=100. On the other hand, an increase/decrease in the other parameters K H , K α will not significantly change IL-4 and TGF-β levels at t=100 for both low and high LPS levels (α). The analysis was carried out using the method of Marino et al. (2008)

Table 3 Partial rank correlation coefficient (PRCC) of the system of ODEs (12)–(13) for dimensionless parameters (α, β, K H , γ, μ, δ, ζ, K α ) at t=1,10,100 when LPS levels (α) are low (0.01<α<1)
Table 4 Partial rank correlation coefficient (PRCC) of the system of ODEs (12)–(13) for dimensionless parameters (α, β, K H , γ, μ, δ, ζ, K α ) at t=1,10,100 when LPS levels (α) are high (10<α<100). Asterisk () represents the case with the p-value <0.01

Case 1. Low LPS levels (0.01<α<1) We conclude that the IL-4 level at t=100 is positively (negatively) correlated to the parameter β (α, μ) but is weakly correlated (and thus not sensitive) to K H , γ, δ, ζ, K α . On the other hand, TGF-β level is positively correlated to the parameter α, δ but is not sensitive to β, K H , γ, μ, ζK α .

Case 2. High LPS levels (10<α<100) We conclude that the IL-4 level at t=100 is positively (negatively) correlated to the parameter β (α, γ, μ, ζ) but is weakly correlated (and thus not sensitive) to K H , δ, K α . This implies that an increase in parameter β will increase H, leading to higher probability of inducing Th17 and Th2 phenotypes instead of Th1 phenotype (see Fig. 10(A)) while an increase in γ will increase a chance to get the Th1 phenotype instead of Th17 or Th2 phenotypes (see Fig. 10(B)). On the other hand, TGF-β level is positively (negatively) correlated to the parameter β (γ, μ) but is not sensitive to α, K H , δ, ζ, K α .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Hwang, H.J. & Kim, Y. Modeling the Role of TGF-β in Regulation of the Th17 Phenotype in the LPS-Driven Immune System. Bull Math Biol 76, 1045–1080 (2014). https://doi.org/10.1007/s11538-014-9946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9946-6

Keywords

Navigation