Skip to main content
Log in

Experimental Design for Dynamics Identification of Cellular Processes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We address the problem of using nonlinear models to design experiments to characterize the dynamics of cellular processes by using the approach of the Maximally Informative Next Experiment (MINE), which was introduced in W. Dong et al. (PLoS ONE 3(8):e3105, 2008) and independently in M.M. Donahue et al. (IET Syst. Biol. 4:249–262, 2010). In this approach, existing data is used to define a probability distribution on the parameters; the next measurement point is the one that yields the largest model output variance with this distribution. Building upon this approach, we introduce the Expected Dynamics Estimator (EDE), which is the expected value using this distribution of the output as a function of time. We prove the consistency of this estimator (uniform convergence to true dynamics) even when the chosen experiments cluster in a finite set of points. We extend this proof of consistency to various practical assumptions on noisy data and moderate levels of model mismatch. Through the derivation and proof, we develop a relaxed version of MINE that is more computationally tractable and robust than the original formulation. The results are illustrated with numerical examples on two nonlinear ordinary differential equation models of biomolecular and cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bazil, J. N., Buzzard, G. T., & Rundell, A. E. (2011). A global parallel model based design of experiments method to minimize model output uncertainty. Bull. Math. Biol., 74, 688–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D., & Reid, N. (2000). The theory of the design of experiments. Monographs on statistics and applied probability. London/Boca Raton: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • Donahue, M. M., Buzzard, G. T., & Rundell, A. E. (2010). Experiment design through dynamical characterisation of non-linear systems biology models utilising sparse grids. IET Syst. Biol., 4, 249–262.

    Article  Google Scholar 

  • Dong, W., Tang, X., Yu, Y., Nilsen, R., Kim, R., Griffith, J., Arnold, J., & Schuttler, H. (2008). Systems biology of the clock in Neurospora crassa. PLoS ONE, 3(8), e3105.

    Article  Google Scholar 

  • Fedorov, V. V., & Hackl, P. (1997). Model-oriented design of experiments. New York: Springer.

    Book  MATH  Google Scholar 

  • Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560), 1662–1664.

    Article  Google Scholar 

  • Klimke, A., & Wohlmuth, B. (2005). Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw., 31(4), 561–579.

    Article  MathSciNet  MATH  Google Scholar 

  • Kreutz, C., & Timmer, J. (2009). Systems biology: experimental design. FEBS J., 276(4), 923–942.

    Article  Google Scholar 

  • Lipniacki, T., Hat, B., Faeder, J. R., & Hlavacek, W. S. (2008). Stochastic effects and bistability in T-cell receptor signaling. J. Theor. Biol., 254(1), 110–122.

    Article  MathSciNet  Google Scholar 

  • Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput., 15, 1251–1279.

    Article  MathSciNet  MATH  Google Scholar 

  • Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments. New York: Wiley.

    MATH  Google Scholar 

  • Niederreiter, H. (1978). Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc., 84(6), 957–1041.

    Article  MathSciNet  MATH  Google Scholar 

  • Pronzato, L. (2009). Asymptotic properties of nonlinear estimates in stochastic models with finite design space. Stat. Probab. Lett., 79(21), 2307–2313.

    Article  MathSciNet  MATH  Google Scholar 

  • Pronzato, L. (2010). One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika, 71(2), 219–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Pukelsheim, F. (1993). Optimal design of experiments. New York: Wiley.

    MATH  Google Scholar 

  • Ritter, C., & Tanner, M. A. (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy–Gibbs sampler. J. Am. Stat. Assoc., 87(419), 861–868.

    Article  Google Scholar 

  • Sontag, E. D. (2002). For differential equations with r parameters, 2r+1 experiments are enough for identification. J. Nonlinear Sci., 12, 553–583.

    Article  MathSciNet  MATH  Google Scholar 

  • White, L. V. (1973). An extension of the general equivalence theorem to nonlinear models. Biometrika, 60(2), 345–348.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All authors partially supported by NSF grant DMS-0900277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Dinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, V., Rundell, A.E. & Buzzard, G.T. Experimental Design for Dynamics Identification of Cellular Processes. Bull Math Biol 76, 597–626 (2014). https://doi.org/10.1007/s11538-014-9935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9935-9

Keywords

Navigation