Skip to main content
Log in

Implementation of Transportation Distance for Analyzing FLIM and FRET Experiments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    Article  Google Scholar 

  • Booth MJ, Wilson T (2004) Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214:36–42

    Article  MathSciNet  Google Scholar 

  • Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD, Neil MAA, Juskaitis R, Wilson T (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257

    Article  MathSciNet  Google Scholar 

  • Del Barrio E, Giné E, Matrán C (1999) Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann Probab 27:1009–1071

  • Deville-Bonne D, Sellam O, Merola F, Lascu I, Desmadril M, Veron M (1996) Phosphorylation of nucleoside diphosphate kinase at the active site studied by steady-state and time-resolved fluorescence. Biochemistry 35:14643–14650

    Article  Google Scholar 

  • Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–16

    Article  Google Scholar 

  • Diribarne G, Bensaude O (2009) 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol 6:122–128

    Article  Google Scholar 

  • Dulac C, Michels AA, Fraldi A, Bonnet F, Nguyen VT, Napolitano G, Lania L, Bensaude O (2005) Transcription-dependent association of multiple positive transcription elongation factor units to a HEXIM multimer. J Biol Chem 280:30619–30629

    Article  Google Scholar 

  • Dziuda DM (2010) Data mining for genomics and proteomics. Wiley, London

    Book  Google Scholar 

  • Esposito A, Gerritsen HC, Wouters FS (2005) Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis. Biophys J 89:4286–4299

    Article  Google Scholar 

  • Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL (2008) FRET imaging of hemoglobin concentration in plasmodium falciparum-infected red cells. PLos One 3:e3780

    Article  Google Scholar 

  • Festy F, Ameer-Beg SM, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. Mol BioSyst 3:381–391

    Article  Google Scholar 

  • Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (Flim): spatial-resolution of microstructures on the nanosecond time-scale. Biophys Chem 48:221–239

    Article  Google Scholar 

  • Heskes AM, Lincoln CN, Goodger JQD, Woodrow IE, Smith TA (2012) Multiphoton fluorescence lifetime imaging shows spatial segregation of secondary metabolites in Eucalyptus secretory cavities. J Microsc 247:33–42

    Article  Google Scholar 

  • Hoppe AD (2007) In: Shorte SL, Frischknecht F (eds) Imaging cellular and molecular biological functions. Springer, Berlin pp 157–181

  • Krishnan RV, Saitoh H, Terada H, Centonze VE, Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74:2714–2721

    Article  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum Publishers, New York

    Book  Google Scholar 

  • Ledoux M (1994) Isoperimetry and Gaussian analysis, http://www.math.univ-toulouse.fr/ledoux/Flour

  • Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T, Zink D, Cardoso MC (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271–280

    Article  Google Scholar 

  • Leray A, Spriet C, Trinel D, Heliot L (2009a) Three-dimensional polar representation for multispectral fluorescence lifetime imaging microscopy. Cytom A 75:1007–1014

  • Leray A, Riquet FB, Richard E, Spriet C, Trinel D, Héliot L (2009b) Optimized protocol of a frequency domain fluorescence lifetime imaging microscope for FRET measurements. Microsc Res Tech 72:371–379

  • Leray A, Spriet C, Trinel D, Blossey R, Usson Y, Héliot L (2011) Quantitative comparison of polar approach versus fitting method in time domain FLIM image analysis. Cytom Part A 79A:149–158

    Article  Google Scholar 

  • Leray A, Spriet C, Trinel D, Usson Y, Héliot L (2012) Generalization of the polar representation in time domain fluorescence lifetime imaging microscopy for biological applications: practical implementation. J Microsc 248:66–76

    Article  Google Scholar 

  • Leray A, Padilla-Parra S, Roul J, Héliot L, Tramier M (2013) Spatio-temporal quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods. PLoS One 8:e69335

    Article  Google Scholar 

  • Ling H, Okada K (2007) An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal Mach Intell 29:840–853

    Article  Google Scholar 

  • Padilla-Parra S, Auduge N, Coppey-Moisan M, Tramier M (2008) Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95:2976–2988

    Article  Google Scholar 

  • Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 34:369–376

    Article  Google Scholar 

  • Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  • Seidenari S, Arginelli F, Dunsby C, French PMW, Konig K, Magnoni C, Talbot C, Ponti G (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. Plos One 8:e70682

    Article  Google Scholar 

  • Silva L, Coutinho A, Fedorov A, Prieto M (2006) Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. Biochimica et Biophys Acta 1758:452–459

    Article  Google Scholar 

  • Sipieter F, Vandame P, Spriet C, Leray A, Vincent P, Trinel D, Bodart JF, Riquet FB, Héliot L (2013) From FRET imaging to practical methodology for kinase activity sensing in living cells. Prog Mol Biol Transl Sci 113:145–216

    Article  Google Scholar 

  • Suhling K, French PM, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    Article  Google Scholar 

  • Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley, London

    Book  Google Scholar 

  • Villani C (2009) Optimal transport: old and new. Springer, Berlin

  • Waharte F, Spriet C, Heliot L (2006) Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells. Cytom A 69:299–306

    Article  Google Scholar 

  • Zhong H, Wu X, Huang H, Fan Q, Zhu Z, Lin S (2006) Vertebrate MAX-1 is required for vascular patterning in zebrafish. Proc Natl Acad Sci USA 103:16800–16805

    Article  Google Scholar 

Download references

Acknowledgments

We thank Franck Riquet (University of Lille1), Francois Sipieter (University of Lille1) and Céline Schulz (IRI) for creating the memb-eGFP and CFP-Venus plasmids. We are grateful to Olivier Bensaude (IBENS) for kindly providing us with the HEXIM1-CFP plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Leray.

Additional information

This work was funded by the CNRS, the Région Nord-Pas de Calais, the European Regional Developmental Funds (CPER CIA 2007–2013), the French Research Agency (ANR-12-BSV5-0018), a Leica Microsystems partnership and the French network in microscopy GDR2588. This work was also supported in part by the national large loans ”Equipex” (ImaginEx BioMed) and ”Labex” CEMPI (ANR-11-LABX-0007-01).

Appendices

Appendix A: Expressing \(d_{\text {trans}}(S,{{S}^\mathrm {b}})\) and Comparing with \(d_{\text {int}}(S,{{S}^\mathrm {b}})\)

1.1 In Case where \(\mathsf {T}=\infty \)

This theoretical study is restricted to \(\mathsf {T}=\infty \) ; for truncated exponential functions (see below), the sign of some expressions involved is much more complicated to grasp. For now, assume that

$$\begin{aligned} S(t)&= \varphi _1 \exp \left( -\frac{t}{\tau _1}\right) +\varphi _2 \exp \left( -\frac{t}{\tau _2}\right) ,\\ {{S}^\mathrm {b}}(t)&= {{\varphi _1}^\mathrm {b}}\exp \left( -\frac{t}{{{\tau _1}^\mathrm {b}}}\right) +{{\varphi _2}^\mathrm {b}}\exp \left( -\frac{t}{{{\tau _2}^\mathrm {b}}}\right) . \end{aligned}$$

If \(\varphi _1 =1\), we have

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) = \int _0^\infty \left| {{\varphi _1}^\mathrm {b}} (\mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/{{\tau _1}^\mathrm {b}}})+{{\varphi _2}^\mathrm {b}}(\mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/{{\tau _2}^\mathrm {b}}})\right| \, dt, \end{aligned}$$
(20)

whereas if \(\tau _1 ={{\tau _1}^\mathrm {b}}\), we have

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) = \int _0^\infty \left| (\varphi _1-{{\varphi _1}^\mathrm {b}}) (\mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/\tau _2})+{{\varphi _2}^\mathrm {b}}(\mathrm {e}^{-t/\tau _2}-\mathrm {e}^{-t/{{\tau _2}^\mathrm {b}}})\right| \, dt.\qquad \end{aligned}$$
(21)

Under conditions  \(\underline{\tau _1={{\tau _1}^\mathrm {b}},\,\varphi _1=1}\): Eq. (20) yields

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) = {{\varphi _2}^\mathrm {b}}\int _0^\infty \left| \mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/{{\tau _2}^\mathrm {b}}}\right| \, dt = {{\varphi _2}^\mathrm {b}}|\tau _1-{{\tau _2}^\mathrm {b}}|=d_{\text {int}}(S,{{S}^\mathrm {b}}). \end{aligned}$$

Under conditions  \(\underline{\tau _1<{{\tau _1}^\mathrm {b}},\,\varphi _1=1}\): It is not difficult to see from Eq. (20) that

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) = \int _0^\infty (\mathrm {e}^{-t/{{\tau _1}^\mathrm {b}}}-\mathrm {e}^{-t/\tau _1})\Big |\underbrace{{{\varphi _1}^\mathrm {b}} +{{\varphi _2}^\mathrm {b}} \dfrac{\mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/{{\tau _2}^\mathrm {b}}}}{\mathrm {e}^{-t/\tau _1}-\mathrm {e}^{-t/{{\tau _1}^\mathrm {b}}}}}_{\text {denoted by }h(t)}\Big |\, dt \end{aligned}$$
(22)

and we write further

$$\begin{aligned} h(t)={{\varphi _1}^\mathrm {b}} +{{\varphi _2}^\mathrm {b}} \frac{1-\mathrm {e}^{-At}}{1-\mathrm {e}^{-Bt}},\quad h(0)={{\varphi _1}^\mathrm {b}} +{{\varphi _2}^\mathrm {b}} \frac{A}{B}, \end{aligned}$$
(23)

with

$$\begin{aligned} A=\frac{1}{{{\tau _2}^\mathrm {b}}}-\frac{1}{\tau _1},\quad B=\frac{1}{{{\tau _1}^\mathrm {b}}}-\frac{1}{\tau _1}. \end{aligned}$$
(24)

Here, we have \(B<0\). If we assume that \(A\le 0\), then \(h(t)\) is always at least \(0\), see Eq. (23) ; otherwise \(A>0\) and we need to compute

$$\begin{aligned} h'(t)&= {{\varphi _2}^\mathrm {b}}\frac{(1-\mathrm {e}^{-Bt})A\mathrm {e}^{-At}-(1-\mathrm {e}^{-At})b\mathrm {e}^{-Bt}}{(1-\mathrm {e}^{-Bt})^2}\nonumber \\&= {{\varphi _2}^\mathrm {b}}\frac{-(A-B)\mathrm {e}^{-(A+B)t}+(A\mathrm {e}^{-At}-B\mathrm {e}^{-Bt})}{(1-\mathrm {e}^{-Bt})^2}\nonumber \\&= {{\varphi _2}^\mathrm {b}}\underbrace{\frac{-(A-B)}{(1-\mathrm {e}^{-Bt})^2}}_{<0}\underbrace{\left[ \mathrm {e}^{-(A+B)t}-\left( \frac{A}{A-B}\mathrm {e}^{-At}-\frac{B}{A-B}\mathrm {e}^{-Bt}\right) \right] }_{\le 0\text { by convexity}}, \end{aligned}$$
(25)

so that \(h(t)\) is increasing. The sign of \(h(t)\) will be constant if and only if \(h(0)\ge 0\). Consequently \(d_{\text {trans}}(S,{{S}^\mathrm {b}})\) will match \(d_{\text {int}}(S,{{S}^\mathrm {b}})\) when

$$\begin{aligned} {{\tau _2}^\mathrm {b}}\ge \tau _1\quad \text {or}\quad \frac{{{\varphi _1}^\mathrm {b}}}{{{\varphi _2}^\mathrm {b}}}\ge -\frac{\frac{1}{{{\tau _2}^\mathrm {b}}}-\frac{1}{\tau _1}}{\frac{1}{{{\tau _1}^\mathrm {b}}}-\frac{1}{\tau _1}}. \end{aligned}$$

Under conditions \(\underline{\tau _1>{{\tau _1}^\mathrm {b}},\,\varphi _1=1}\): In that setting, we have \(B>0\), see Eq. (24). If \(A\ge 0\), then \(h(t)\) stays non-negative. If \(A< 0\), then we see from Eqs. (23) and (25) that \(h'(t)\) is negative and \(h(t)\) decreases. In this case, the sign of \(h(t)\) will be constant if \(h(0)\le 0\). Consequently, \(d_{\text {trans}}(S,{{S}^\mathrm {b}})\) will match \(d_{\text {int}}(S,{{S}^\mathrm {b}})\) when

$$\begin{aligned} {{\tau _2}^\mathrm {b}}\le \tau _1\quad \text {or}\quad \frac{{{\varphi _1}^\mathrm {b}}}{{{\varphi _2}^\mathrm {b}}}\le -\frac{\frac{1}{{{\tau _2}^\mathrm {b}}}-\frac{1}{\tau _1}}{\frac{1}{{{\tau _1}^\mathrm {b}}}-\frac{1}{\tau _1}}. \end{aligned}$$

Under conditions \(\underline{\tau _1={{\tau _1}^\mathrm {b}},\,\tau _2={{\tau _2}^\mathrm {b}}}\): We see from Eq. (21) that the absolute value can be removed so that we always have \(d_{\text {trans}}(S,{{S}^\mathrm {b}}) = d_{\text {int}}(S,{{S}^\mathrm {b}})\).

Under conditions \(\underline{\tau _1={{\tau _1}^\mathrm {b}},\,\tau _1>\tau _2>{{\tau _2}^\mathrm {b}}}\): From Eq. (21), we get

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) {=} |\varphi _1-{{\varphi _1}^\mathrm {b}}|\int _0^\infty (\mathrm {e}^{-t/\tau _1}{-}\mathrm {e}^{-t/\tau _2})\Big |\underbrace{1{+}\frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}}\times \frac{\mathrm {e}^{-t/\tau _2}{-}\mathrm {e}^{-t/{{\tau _2}^\mathrm {b}}}}{\mathrm {e}^{-t/\tau _1}{-}\mathrm {e}^{-t/\tau _2}}}_{=k(t)}\Big |\, dt, \end{aligned}$$

and write further

$$\begin{aligned} k(t)=1+\frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}}\frac{1-\mathrm {e}^{-Ct}}{\mathrm {e}^{Dt}-1}, \end{aligned}$$

with

$$\begin{aligned} C=\frac{1}{{{\tau _2}^\mathrm {b}}}-\frac{1}{\tau _2}>0\quad \text {and}\quad D=\frac{1}{\tau _2}-\frac{1}{\tau _1}>0. \end{aligned}$$

Computing the derivative, we get

$$\begin{aligned} k'(t)&= \frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}}\frac{(\mathrm {e}^{Dt}-1)C\mathrm {e}^{-Ct}-(1-\mathrm {e}^{-Ct})d\mathrm {e}^{Dt}}{(\mathrm {e}^{Dt}-1)^2}\\&= \frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}} \frac{(C+D)\mathrm {e}^{(D-C)t}-(C\mathrm {e}^{-Ct}+D\mathrm {e}^{Dt})}{(\mathrm {e}^{Dt}-1)^2}\\&= \frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}} \frac{(C+D)}{(\mathrm {e}^{Dt}-1)^2}\times \underbrace{\left[ \mathrm {e}^{(D-C)t}-\left( \frac{C}{C+D}\mathrm {e}^{-Ct}+\frac{D}{C+D}\mathrm {e}^{Dt}\right) \right] }_{< 0\text { by strict convexity}}, \end{aligned}$$

and thus \(k(t)\) is monotonic, with \(k(0)=1+\frac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}} \frac{C}{D}\) and \(\lim _{t\rightarrow \infty }k(t)=1\). Thus, \(k(t)\) has a constant sign if and only if \(k(0)\ge 0\), and this is equivalent to

$$\begin{aligned} \dfrac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}}\times \frac{C}{D}\ge -1. \end{aligned}$$

Consequently \(d_{\text {trans}}(S,{{S}^\mathrm {b}})\) will match \(d_{\text {int}}(S,{{S}^\mathrm {b}})\) when

$$\begin{aligned} \dfrac{1-{{\varphi _1}^\mathrm {b}}}{\varphi _1-{{\varphi _1}^\mathrm {b}}}\ge -\frac{\frac{1}{\tau _2}-\frac{1}{\tau _1}}{\frac{1}{{{\tau _2}^\mathrm {b}}}-\frac{1}{\tau _2}}. \end{aligned}$$
Table 2 Conditions for obtaining: \(d_{\text {trans}}=d_{\text {int}}\) when \(\mathsf {T}=\infty \)

These results are summarized in Table 2.

1.2 In Case where \(\mathsf {T}<\infty \)

In this case, conditions to have \(d_{\text {trans}}=d_{\text {int}}\) are much more complicated to reach mathematically. There are nevertheless easy cases which are worth to mention. Assume that

$$\begin{aligned} S(t)&= \varphi _1\frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _1}-1}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}+\varphi _2\frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _2}-1}{\mathrm {e}^{\mathsf {T}/\tau _2}-1},\\ {{S}^\mathrm {b}}(t)&= {{\varphi _1}^\mathrm {b}}\frac{\mathrm {e}^{(\mathsf {T}-t)/{{\tau _1}^\mathrm {b}}}-1}{\mathrm {e}^{\mathsf {T}/{{\tau _1}^\mathrm {b}}}-1}+{{\varphi _2}^\mathrm {b}}\frac{\mathrm {e}^{(\mathsf {T}-t)/{{\tau _2}^\mathrm {b}}}-1}{\mathrm {e}^{\mathsf {T}/{{\tau _2}^\mathrm {b}}}-1}. \end{aligned}$$

If \(\varphi _1 =1\), we have

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}})&= \int _0^\infty \left| {{\varphi _1}^\mathrm {b}} \left( \frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _1}-1}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}-\frac{\mathrm {e}^{(\mathsf {T}-t)/{{\tau _1}^\mathrm {b}}}-1}{\mathrm {e}^{\mathsf {T}/{{\tau _1}^\mathrm {b}}}-1}\right) \right. \nonumber \\&\qquad \left. +\,{{\varphi _2}^\mathrm {b}}\left( \frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _1}-1}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}-\frac{\mathrm {e}^{(\mathsf {T}-t)/{{\tau _2}^\mathrm {b}}}-1}{\mathrm {e}^{\mathsf {T}/{{\tau _2}^\mathrm {b}}}-1}\right) \right| \, dt, \end{aligned}$$
(26)

whereas if \(\tau _1 ={{\tau _1}^\mathrm {b}}\), we have

$$\begin{aligned} d_{\text {trans}}(S,{{S}^\mathrm {b}}) =\int _0^\infty \left| (\varphi _1-{{\varphi _1}^\mathrm {b}}) \left( \frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _1}-1}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}-\frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _2}-1}{\mathrm {e}^{\mathsf {T}/\tau _2}-1}\right) \right. \nonumber \\ \left. \,+\,{{\varphi _2}^\mathrm {b}}\left( \frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _2}-1}{\mathrm {e}^{\mathsf {T}/\tau _2}-1}-\frac{\mathrm {e}^{(\mathsf {T}-t)/{{\tau _2}^\mathrm {b}}}-1}{\mathrm {e}^{\mathsf {T}/{{\tau _2}^\mathrm {b}}}-1}\right) \right| \, dt. \end{aligned}$$
(27)

From the fact that for \(B=\mathsf {T}\) and \(A=\mathsf {T}-t>0\), the function

$$\begin{aligned} \tau \mapsto \frac{\mathrm {e}^{A/\tau }-1}{\mathrm {e}^{B/\tau }-1}\quad \text { is increasing on} (0,\infty ), \end{aligned}$$

we deduce Table 3 for finite \(\mathsf {T}\).

Table 3 Conditions for obtaining \(d_{\text {trans}}=d_{\text {int}}\) when \(\mathsf {T}<\infty \) in the easy cases

Appendix B: Confidence Limit for \(d_{\text {trans}}(S_N,S)\): Tools

1.1 Auxillary Lemma

The following result will be of use:

Lemma 1

Assume that for all \(t\in [0,\mathsf {T}]\)

$$\begin{aligned} S(t)=\varphi _1\frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _1}-1}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}+\varphi _2\frac{\mathrm {e}^{(\mathsf {T}-t)/\tau _2}-1}{\mathrm {e}^{\mathsf {T}/\tau _2}-1}. \end{aligned}$$

We have for all \(u,t\in [0,\mathsf {T}]\)

  1. (i)

    \(\int _u^\mathsf {T}S(t)\,dt = \varphi _1\dfrac{\tau _1(\mathrm {e}^{(\mathsf {T}-u)/\tau _1}-1)-(\mathsf {T}-u)}{\mathrm {e}^{\mathsf {T}/\tau _1}-1}+\varphi _2\dfrac{\tau _2(\mathrm {e}^{(\mathsf {T}-u)/\tau _2}-1)-(\mathsf {T}-u)}{\mathrm {e}^{\mathsf {T}/\tau _2}-1}\),

  2. (ii)

    \(S(t) \le \dfrac{\mathrm {e}^{(\mathsf {T}-t)/\max (\tau _1,\tau _2)}-1}{\mathrm {e}^{\mathsf {T}/\max (\tau _1,\tau _2)}-1}\),

  3. (iii)

    If we set for \(m>0\),

    $$\begin{aligned} \lambda (m)=1-\frac{\arctan \left( \frac{1}{2}\sqrt{\mathrm {e}^{\frac{\mathsf {T}}{m}}-1}\right) }{\frac{1}{2}\sqrt{\mathrm {e}^{\frac{\mathsf {T}}{m}}-1}}+\log \left( \frac{2}{\sqrt{1+3\mathrm {e}^{-\frac{\mathsf {T}}{m}}}}\right) , \end{aligned}$$

    then,

    $$\begin{aligned} \int _0^\mathsf {T}\sqrt{S(t)(1-S(t))}\,dt\le \lambda (\max (\tau _1,\tau _2)) \max (\tau _1,\tau _2)\le (1+\log 2)\max (\tau _1,\tau _2). \end{aligned}$$

Proof

The first assertion (i) follows easily by calculus and (ii) comes from the fact that for \(B> A>0\), the function

$$\begin{aligned} x\mapsto \frac{\mathrm {e}^{Ax}-1}{\mathrm {e}^{Bx}-1}\quad \text { is decreasing on} (0,\infty ). \end{aligned}$$

For (iii), set for short \(m=\max (\tau _1,\tau _2)\). We bound the integral of (iii) by splitting it in two parts: For any \(u\) in \([0,\mathsf {T}]\), since \(\sqrt{S(t)(1-S(t))}\) is at most one half, and by (ii),

$$\begin{aligned} \int _0^\mathsf {T}\sqrt{S(t)(1-S(t))}\,dt&\le \int _0^u \frac{1}{2}\,dt+\int _{u}^\mathsf {T}\sqrt{S(t)(1-S(t))}\,dt \\&\le \frac{u}{2}+\int _{u}^\mathsf {T}\sqrt{S(t)}\,dt\\&\le \frac{u}{2}+\int _{u}^\mathsf {T}\sqrt{\frac{\mathrm {e}^{(\mathsf {T}-t)/m}-1}{\mathrm {e}^{\mathsf {T}/m}-1}} \,dt. \end{aligned}$$

Going on, by the change of variable \(t=\mathsf {T}-m\log (1+x^2)\), we get

$$\begin{aligned} \int _{u}^\mathsf {T}\sqrt{\mathrm {e}^{(\mathsf {T}-t)/m}-1} \,dt&= 2m \int _0^{\sqrt{\mathrm {e}^{(\mathsf {T}-u)/m}-1}}\frac{x^2}{1+x^2}\,dx\\&= 2m\left[ \sqrt{\mathrm {e}^{(\mathsf {T}-u)/m}-1}-\arctan \left( \sqrt{\mathrm {e}^{(\mathsf {T}-u)/m}-1}\right) \right] \end{aligned}$$

and thus

$$\begin{aligned}&\int _0^\mathsf {T}\sqrt{S(t)(1-S(t))}\,dt \le \frac{u}{2}+\frac{2m}{\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}}\\&\quad \times \,\left[ \sqrt{\mathrm {e}^{(\mathsf {T}-u)/m}-1}-\arctan \left( \sqrt{\mathrm {e}^{(\mathsf {T}-u)/m}-1}\right) \right] . \end{aligned}$$

To optimize in \(u\), we set \(u=\mathsf {T}-my\) and introduce the function

$$\begin{aligned} h(y)=\frac{\mathsf {T}-my}{2} +\frac{2m}{\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}}\left[ \sqrt{\mathrm {e}^y -1}-\arctan (\sqrt{\mathrm {e}^y -1})\right] \end{aligned}$$

whose derivative is

$$\begin{aligned} h'(y)=m\left[ -\frac{1}{2}+\sqrt{\frac{\mathrm {e}^y-1}{\mathrm {e}^{\mathsf {T}/m}-1}}\right] . \end{aligned}$$

We see then that we have to choose \(y_0\) such that \(\sqrt{\mathrm {e}^{y_0}-1 }=\frac{1}{2} \sqrt{\mathrm {e}^{\mathsf {T}/m}-1}\) which yields

$$\begin{aligned} h(y_0)&= \frac{\mathsf {T}-m\log \left( 1+\frac{1}{4}(\mathrm {e}^{\mathsf {T}/m}-1)\right) }{2}+m\left[ 1-\frac{\arctan \left( \frac{1}{2}\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}\right) }{\frac{1}{2}\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}}\right] \\&= m\left\{ \log \left( \frac{2}{\sqrt{1+3\mathrm {e}^{-\mathsf {T}/m}}}\right) +\left[ 1-\frac{\arctan \left( \frac{1}{2}\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}\right) }{\frac{1}{2}\sqrt{\mathrm {e}^{\mathsf {T}/m}-1}}\right] \right\} \\&= m\lambda (m). \end{aligned}$$

Note by the way that \(\lambda (m)\) is increasing as a function of \(\mathsf {T}\) and consequently bounded by \(\lim _{\mathsf {T}\rightarrow \infty } \lambda (m)=\log 2 +1\).

1.2 Asymptotic Behavior of \(d_{\text {trans}}(S_N,S)\): Approximate Confidence Limit

Provided that \(S\) is sufficiently integrable (which is the case for our truncated exponential models given by Eq. 5), a straightforward consequence of the central limit theorem for empirical processes in \(L^1(\mathbb {R})\) (Del Barrio et al. 1999, Theorem 2.1) is

$$\begin{aligned} \sqrt{N}\, d_{\text {trans}}(S_N,S)\xrightarrow [N\rightarrow \infty ]{\text {Law}} \int _0^\mathsf {T}|B_{S(t)}|dt, \end{aligned}$$

or less formally,

$$\begin{aligned} d_{\text {trans}}(S_N,S)\text { is distributed as } \dfrac{\int _0^\mathsf {T}|B_{S(t)}|dt}{\sqrt{N}} \text { for} N \text {large enough}, \end{aligned}$$
(28)

where \(\{B_u,u\in [0,1]\}\) is a standard Brownian bridge, that is, a centered Gaussian process on \([0,1]\) with covariance function \(\mathbf {E}(B_uB_v)=\min (u,v)-uv\) (convergence of moments is also true, see (Del Barrio et al. 1999, Theorem 2.4a)). Furthermore, since for each \(t\), \(B_{S(t)}\) is a centered Gaussian random variable with variance \(S(t)(1-S(t))\),

$$\begin{aligned} \int _0^\mathsf {T}\mathbf {E}|B_{S(t)}|dt=\sqrt{\dfrac{2}{\pi }}\int _0^\mathsf {T}\sqrt{S(t)(1-S(t))}dt. \end{aligned}$$

Thus, by Lemma 1 (iii),

$$\begin{aligned} \int _0^\mathsf {T}\mathbf {E}|B_{S(t)}|dt\le \sqrt{\frac{2}{\pi }}\lambda (\max (\tau _1,\tau _2))\max (\tau _1,\tau _2)\le \sqrt{\frac{2}{\pi }} (1+\log 2)\max (\tau _1,\tau _2).\nonumber \\ \end{aligned}$$
(29)

Besides, the Gaussian deviation inequality (Ledoux 1994, Corollary 1) applied in the separable Banach space \(L^1(\mathbb {R}_+)\) (whose dual space is \(L^\infty (\mathbb {R}_+)\)) gives for all positive \(u\),

$$\begin{aligned} \mathbf {P}\left( \int _0^\mathsf {T}|B_{S(t)}|dt\ge u+\int _0^\mathsf {T}\mathbf {E}|B_{S(t)}|dt\right) \le \exp \left( -\dfrac{u^2}{2\sigma ^2}\right) \end{aligned}$$
(30)

with a deviation parameter \(\sigma ^2\) which is tractable:

$$\begin{aligned} \sigma ^2&= \sup _{|f|\le 1}\mathbf {E}\left( \int _0^\mathsf {T}B_{S(t)} f(t)dt\right) ^2\nonumber \\&= \sup _{|f|\le 1}\int \int _{[0,\mathsf {T}]^2}\mathbf {E}(B_{S(t)}B(S(u))) f(t)f(u)dtdu\nonumber \\&= \sup _{|f|\le 1}\int \int _{[0,\mathsf {T}]^2} [\min (S(t),S(u))-S(t)S(u)]f(t)f(u)dtdu\nonumber \\&= \int \int _{[0,\mathsf {T}]^2} [\min (S(t),S(u))-S(t)S(u)]\,dtdu\nonumber \\&= 2\int \int _{\mathsf {T}>t>u>0} S(t)\,dtdu-\left( \int _0^\mathsf {T}S(t)\,dt\right) ^2\nonumber \\&= 2\int _0^\mathsf {T}\left[ \int _u^\mathsf {T}S(t)dt\right] du-(\varphi _1\tau _1\rho _1+\varphi _2\tau _2\rho _2)^2\nonumber \\&= 2(\varphi _1\tau _1^2\eta _1+\varphi _2\tau _2^2\eta _2)-(\varphi _1\tau _1\rho _1+\varphi _2\tau _2\rho _2)^2, \end{aligned}$$
(31)

where we set for short

$$\begin{aligned} \rho _i=\rho (\tau _i)\quad \text { and }\quad \eta _i=\eta (\tau _i)\quad (i=1,2) \end{aligned}$$

with \([0,1]\)-valued and increasing functions

$$\begin{aligned} \rho (x)=1-\frac{\mathsf {T}/x}{\mathrm {e}^{\mathsf {T}/x}-1}\quad \text { and }\quad \eta (x)=1-\frac{\mathsf {T}/x}{\mathrm {e}^{\mathsf {T}/x}-1}-\frac{(\mathsf {T}/x)^2}{2(\mathrm {e}^{\mathsf {T}/x}-1)}. \end{aligned}$$

A small study of variations shows that for \(x\le \mathsf {T}\), we have \(\eta (x)\le \rho (x)^2\) so that \(\eta _i\le \rho _i^2\) and from Eq. (31)

$$\begin{aligned} \sigma ^2\le 2(\varphi _1\tau _1^2\rho _1^2+\varphi _2\tau _2^2\rho _2^2)-(\varphi _1\tau _1\rho _1+\varphi _2\tau _2\rho _2)^2. \end{aligned}$$
(32)

Moreover, it is not difficult to see that, for \(a,b>0\), the maximum of the function \(\varphi \mapsto 2(\varphi a^2+(1-\varphi )b^2)-(\varphi a+(1-\varphi )b)^2\) on \([0,1]\) is \((\max (a,b))^2\). Consequently, Eq. (32) gives

$$\begin{aligned} \!\!\!\sigma {\le } \max (\tau _1\rho _1,\tau _2\rho _2) \le \max (\tau _1,\tau _2)\rho \left( \max (\tau _1,\tau _2)\right) \end{aligned}$$
(33)

since \(\rho (x)\) is increasing. Now, if we set \(u=\sigma \sqrt{2x}\) in Eq. (30) and use Eqs. (29) and (33), we get

$$\begin{aligned} \mathbf {P}\left( \int _0^\infty \!\! |B_{S(t)}|dt{\ge } \left[ \sqrt{2x}\rho \left( \max (\tau _1,\tau _2)\right) {+}\sqrt{\frac{2}{\pi }}\lambda (\max (\tau _1,\tau _2))\right] \max (\tau _1,\tau _2)\right) {\le } \mathrm {e}^{-x}.\nonumber \\ \end{aligned}$$
(34)

By combining Eqs. (28) and (34), we get that with probability at least \(1-\mathrm {e}^{-x}\)

$$\begin{aligned} d_{\text {trans}}(S_N,S)&\lessapprox&\frac{\left[ \sqrt{2x}\rho \left( \max (\tau _1,\tau _2)\right) +\sqrt{\frac{2}{\pi }}\lambda (\max (\tau _1,\tau _2))\right] \max (\tau _1,\tau _2)}{\sqrt{N}}\end{aligned}$$
(35)
$$\begin{aligned}&\le \dfrac{\left[ \sqrt{2x}+\sqrt{\frac{2}{\pi }}(1+\log 2)\right] \max (\tau _1,\tau _2)}{\sqrt{N}}. \end{aligned}$$
(36)

Note the dependence in \(\mathsf {T}\) of Eq. (35). Actually, the bound Eq. (35) is increasing with respect to \(\mathsf {T}\) and Eq. (36) corresponds to the limit as \(\mathsf {T}\rightarrow \infty \).

By confidence bound at level \(1-\alpha \), we mean a bound under which the distance \(d_{\text {trans}}(S_N,S)\) stays with probability (at least) \(1-\alpha \). We gather some typical examples in Table 4.

Table 4 Confidence bounds for \(d_{\text {trans}}(S_N,S)\) at different levels, with \(N\) photons

For instance in Eq. (36), to compute the constant \(C(x)=\sqrt{2x}+\sqrt{\frac{2}{\pi }}(1+\log 2)\), take \(x\) at least \(\log 100\) to obtain a 99 % confidence limit and note that \(C(\log 100)\simeq 4.386\). For a 95 % confidence limit, take \(x\) at least \(\log 20\) and note that \(C(\log 20)\simeq 3.799\). And for a 90 % confidence limit, take \(x\) at least \(\log 10\) and note that \(C(\log 10)\simeq 3.497\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, P., Gonzalez Pisfil, M., Kahn, J. et al. Implementation of Transportation Distance for Analyzing FLIM and FRET Experiments. Bull Math Biol 76, 2596–2626 (2014). https://doi.org/10.1007/s11538-014-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0025-9

Keywords

Navigation