Skip to main content
Log in

Modelling the Effect of Gap Junctions on Tissue-Level Cardiac Electrophysiology

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

When modelling tissue-level cardiac electrophysiology, a continuum approximation to the discrete cell-level equations, known as the bidomain equations, is often used to maintain computational tractability. Analysing the derivation of the bidomain equations allows us to investigate how microstructure, in particular gap junctions that electrically connect cells, affect tissue-level conductivity properties. Using a one-dimensional cable model, we derive a modified form of the bidomain equations that take gap junctions into account, and compare results of simulations using both the discrete and continuum models, finding that the underlying conduction velocity of the action potential ceases to match up between models when gap junctions are introduced at physiologically realistic coupling levels. We show that this effect is magnified by: (i) modelling gap junctions with reduced conductivity; (ii) increasing the conductance of the fast sodium channel; and (iii) an increase in myocyte length. From this, we conclude that the conduction velocity arising from the bidomain equations may not be an accurate representation of the underlying discrete system. In particular, the bidomain equations are less likely to be valid when modelling certain diseased states whose symptoms include a reduction in gap junction coupling or an increase in myocyte length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Peracchia, C. (1999). Gap junctions: molecular basis of cell communication in health and disease. Current topics in membranes: Vol. 49 (1st ed.). San Diego: Academic Press.

    Google Scholar 

  • Beeler, G. W., & Reuter, H. (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol., 268(1), 177–210.

    Article  Google Scholar 

  • Bensoussan, A., Lions, J.-L., Papanicolaou, G., & Caughey, T. K. (1979). Asymptotic analysis of periodic structures. J. Appl. Mech., 46(2), 477.

    Article  Google Scholar 

  • Clerc, L. (1976). Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol., 255(2), 335–346.

    Article  Google Scholar 

  • Dhein, S. (2004). Cardiac gap junctions: physiology, regulation, pathophysiology and pharmacology (1st ed.). Basel: Karger.

    Google Scholar 

  • Diaz, P. J., Rudy, Y., & Plonsey, R. (1983). Intercalated discs as a cause for discontinuous propagation in cardiac muscle: a theoretical simulation. Ann. Biomed. Eng., 11(3), 177–189.

    Article  Google Scholar 

  • Gutstein, D. E., Morley, G. E., Vaidya, D., Liu, F., Chen, F. L., Stuhlmann, H., & Fishman, G. I. (2001). Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation, 104(10), 1194–1199.

    Article  Google Scholar 

  • Hand, P. E., & Griffith, B. E. (2010). Adaptive multiscale model for simulating cardiac conduction. Proc. Natl. Acad. Sci., 107(33), 14603–14608.

    Article  Google Scholar 

  • Hand, P. E., & Griffith, B. E. (2011). Empirical study of an adaptive multiscale model for simulating cardiac conduction. Bull. Math. Biol., 73(12), 3071–3089.

    Article  MathSciNet  MATH  Google Scholar 

  • Harris, A. L., & Locke, D. (2009). Connexins. Clifton: Humana Press.

    Book  Google Scholar 

  • Hoyt, R. H., Cohen, M. L., & Saffitz, J. E. (1989). Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res., 64(3), 563–574.

    Article  Google Scholar 

  • Hubbard, M. L. L., Ying, W., & Henriquez, C. S. (2007). Effect of gap junction distribution on impulse propagation in a monolayer of myocytes: a model study. Europace 9(6).

  • Jansen, J. A., van Veen, T. A. B., de Bakker, J. M. T., & van Rijen, H. V. M. (2010). Cardiac connexins and impulse propagation. J. Mol. Cell. Cardiol., 48(1), 76–82.

    Article  Google Scholar 

  • Jongsma, H. J., & Wilders, R. (2000). Gap junctions in cardiovascular disease. Circ. Res., 86(12), 1193–1197.

    Article  Google Scholar 

  • Keener, J., & Panfilov, A. (1996). A biophysical model for defibrillation of cardiac tissue. Biophys. J., 71(3), 1335–1345.

    Article  Google Scholar 

  • Keener, J., & Sneyd, J. (2001). Mathematical physiology. Berlin: Springer. Corrected edition.

    Google Scholar 

  • Kléber, A. G., & Rudy, Y. (2004). Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev., 84(2), 431–488.

    Article  Google Scholar 

  • Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B., & Castelli, W. P. (1990). Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N. Engl. J. Med., 322(22), 1561–1566.

    Article  Google Scholar 

  • Neu, J. C., & Krassowska, W. (1993). Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng., 21(2), 137–199.

    Google Scholar 

  • Noble, D., & Rudy, Y. (2001). Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Math. Phys. Eng. Sci., 359(1783), 1127–1142.

    Article  Google Scholar 

  • Pathmanathan, P., Bernabeu, M. O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J. M., Whiteley, J. P., & Gavaghan, D. J. (2010). A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog. Biophys. Mol. Biol., 102(2–3), 136–155.

    Article  Google Scholar 

  • Pathmanathan, P., Mirams, G. R., Southern, J., & Whiteley, J. P. (2011). The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations. Int. J. Numer. Methods Biomed. Eng., 27(11), 1751–1770.

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy, J. N. (1993). Introduction to the finite element method (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Richardson, G., & Chapman, S. J. (2011). Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math., 71(3), 657–675.

    Article  MathSciNet  MATH  Google Scholar 

  • Rohr, S. (2004). Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res., 62(2), 309–322.

    Article  Google Scholar 

  • Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. Biophys. J., 70, 1494–1504.

    Article  Google Scholar 

  • Seidel, T., Salameh, A., & Dhein, S. (2010). A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J., 99(9), 2821–2830.

    Article  Google Scholar 

  • Sommer, J. R. (1983). Implications of structure and geometry on cardiac electrical activity. Ann. Biomed. Eng., 11(3–4), 149–157.

    Article  Google Scholar 

  • Yao, J. A., Gutstein, D. E., Liu, F., Fishman, G. I., & Wit, A. L. (2003). Cell coupling between ventricular myocyte pairs fromftable Connexin43-deficient murine hearts. Circ. Res., 93(8), 736–743.

    Article  Google Scholar 

Download references

Acknowledgements

Doug Bruce is supported by an EPSRC grant to the Life Sciences Interface Doctoral Training Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Bruce.

Appendix

Appendix

1.1 Proof of the Symmetry of the Homogenised Conductivity Tensors

We will show that the conductivity tensor given in Eq. (8) is symmetric by demonstrating that \(\mathbf{S_{i}}^{(1,2)}\) = \(\mathbf{S_{i}}^{(2,1)}\), with the symmetry of the other components following in a similar way. The extracellular conductivity tensor given in Eq. (12) can then be shown to be symmetric using the same logic. Throughout, we will write W for W (i). For reference, the intracellular tensor is given by

$$\mathbf{S_{i}} = \frac{1}{V_{\text{unit}}}\int_{\varOmega_i} \sigma_i \biggl(I + \frac{\partial W}{\partial\mathbf{z}} \biggr) \, \mathrm{d} V_{\mathbf{z}}. $$

As the identity matrix is symmetric, it remains to show that \(\int \sigma_{i} \frac{\partial W}{\partial\mathbf{z}} \, \mathrm{d} V_{\mathbf {z}}\) is symmetric. Using integration by parts, we have

$$\begin{aligned} \iiint\sigma \biggl( \frac{ \partial W_1}{\partial z_2} - \frac {\partial W_2}{\partial z_1} \biggr) \, \mathrm{d} V_{\mathbf{z}} =& \iiint\frac{\partial(\sigma W_1)}{\partial z_2} - \frac{\partial (\sigma W_2)}{\partial z_1} \\ &{}- \frac{\partial\sigma}{\partial z_2} W_1 + \frac{\partial\sigma}{\partial z_2} W_2 \, \mathrm{d} V_{\mathbf{z}}, \end{aligned}$$
(24)

where σ i =σ(z) and, for discontinuous σ, the derivative is taken to be the weak derivative. Using Eq. (9), this becomes

$$\iiint\nabla_{\mathbf{z}} \cdot(-\sigma W_2,\sigma W_1,0) + \nabla _{\mathbf{z}} \cdot(\sigma\nabla_{\mathbf{z}} W_2) W_1 - \nabla _{\mathbf{z}} \cdot(\sigma \nabla_{\mathbf{z}} W_1) W_2 \, \mathrm{d} V_{\mathbf{z}}, $$

which upon rearrangement can be expressed as

$$ \iiint\nabla_{\mathbf{z}} \cdot \bigl[ (-\sigma W_2,\sigma W_1,0) + \sigma W_1 \nabla_{\mathbf{z}} W_2 - \sigma W_2 \nabla_{\mathbf{z}} W_1 \bigr] \, \mathrm{d} V_{\mathbf{z}}. $$
(25)

Applying the divergence theorem then gives

$$\iint\sigma(-W_2 n_1 + W_1 n_2) + \sigma W_1 (\nabla_{\mathbf{z}} W_2) \cdot\mathbf{n} - \sigma W_2 (\nabla_{\mathbf{z}} W_1) \cdot\mathbf {n} \, \mathrm{d} S_{\mathbf{z}}, $$

and by grouping terms, we see that this may be written

$$\iint\sigma W_1 \bigl(n_2 + (\nabla_{\mathbf{z}} W_2) \cdot\mathbf{n}\bigr) - \sigma W_2 \bigl(n_1 + (\nabla_{\mathbf{z}} W_1) \cdot\mathbf{n} \bigr) \, \mathrm {d} S_{\mathbf{z}}. $$

We see from Eq. (10) that this quantity is zero, so that \(\iiint\sigma \frac{ \partial W_{1}}{\partial z_{2}} \, \mathrm{d} V_{\mathbf{z}} = \iiint\sigma\frac{\partial W_{2}}{\partial z_{1}} \, \mathrm{d} V_{\mathbf{z,}} \) and hence \(\mathbf{S_{i}}^{(1,2)} = \mathbf{S_{i}}^{(2,1)}\) as required.

1.2 Derivation of the Intracellular Conductivity Tensor in the Case Where Gap Junctions are Present

We now give a derivation of Eq. (23). We consider the governing equations for the weight functions in the cell and the gap junction separately, and again write W for W (i). As each compartment has homogeneous conductivity, W 1 will satisfy Laplace’s equation in each, and so a solution that satisfies the governing PDE and boundary conditions has a derivative

$$ \frac{\partial W_1}{\partial x} = \begin{cases} B_1, & 0 < x < \delta, \\ B_2, & \delta< x < 1, \end{cases} $$
(26)

where B 1 and B 2 are constants. To find B 1 and B 2, we can integrate the governing equation for \(W^{i}_{1}\), given in (9), across the boundary between the cell and the gap junction at x=δ to give

$$\biggl[ \sigma\frac{\partial W_1}{\partial x} \biggr]^{\delta^+}_{\delta ^-} = [ - \sigma ]^{\delta^+}_{\delta^-}, $$

and, therefore, obtain the relation between B 1 and B 2:

$$\sigma_i B_2 - \sigma_g B_1 = \sigma_g - \sigma_i. $$

We then use the fact that W 1 has zero mean in x to give us

$$\int_0^1 \frac{\partial W_1}{\partial x} \, \mathrm{d} x = \delta B_1 + (1-\delta) B_2 = 0. $$

Solving for B 1 and B 2 gives

$$B_1 = \frac{\delta(\sigma_g-\sigma_i)}{\delta\sigma_i + (1-\delta)\sigma_g} , \qquad B_2 = \frac{(\delta-1)(\sigma_g-\sigma_i)}{\delta\sigma_i + (1-\delta) \sigma_g} , $$

and substituting the above into (8) gives

$$\mathbf{S}_i^{(1,1)} = \frac{V_{\text{intra}}}{V_{\text{cell}}} \biggl( \int _0^{\delta}\sigma_g(1+B_1)\, \mathrm{d}x + \int_{\delta}^1 \sigma_i(1+B_2) \, \mathrm{d}x \biggr)= \frac{f_i \sigma_i \sigma_g }{\delta\sigma_i + (1-\delta) \sigma_g}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruce, D., Pathmanathan, P. & Whiteley, J.P. Modelling the Effect of Gap Junctions on Tissue-Level Cardiac Electrophysiology. Bull Math Biol 76, 431–454 (2014). https://doi.org/10.1007/s11538-013-9927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9927-1

Keywords

Navigation