Skip to main content
Log in

Optimization and Phenotype Allocation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the phenotype allocation problem for the stochastic evolution of a multitype population in a random environment. Our underlying model is a multitype Galton–Watson branching process in a random environment. In the multitype branching model, different types denote different phenotypes of offspring, and offspring distributions denote the allocation strategies. Two possible optimization targets are considered: the long-term growth rate of the population conditioned on nonextinction, and the extinction probability of the lineage. In a simple and biologically motivated case, we derive an explicit formula for the long-term growth rate using the random Perron–Frobenius theorem, and we give an approximation to the extinction probability by a method similar to that developed by Wilkinson. Then we obtain the optimal strategies that maximize the long-term growth rate or minimize the approximate extinction probability, respectively, in a numerical example. It turns out that different optimality criteria can lead to different strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold, L., Gundlach, V., & Demetrius, L. (1994). Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab., 4(3), 859–901.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K., & Karlin, S. (1970). Branching processes with random environments. Bull. Am. Math. Soc., 76, 865–870.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K., & Karlin, S. (1971a). Branching processes with random environments, I: extinction probability. Ann. Math. Stat., 42, 1499–1520.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K., & Karlin, S. (1971b). On branching processes with random environments, II: limit theorems. Ann. Math. Stat., 42, 1843–1858.

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya, K., & Ney, P. (1972). Branching processes. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C., & Rainey, P. B. (2009). Experimental evolution of bet hedging. Nature, 462, 90–93.

    Article  Google Scholar 

  • Bergstrom, C., & Lachmann, M. (2004). Shannon information and biological fitness. In Information theory workshop IEEE (pp. 50–54)

    Chapter  Google Scholar 

  • Brennan, T., & Lo, A. (2011). The origin of behavior. Q. J. Finance, 1(1), 55–108.

    Article  Google Scholar 

  • Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theor. Biol., 12, 119–129.

    Article  Google Scholar 

  • Cooper, W., & Kaplan, R. (1982). Adaptive ‘coin-flipping’: a decision-theoretic examination of natural selection for random individual variation. J. Theor. Biol., 94, 135–151.

    Article  MathSciNet  Google Scholar 

  • Dempster, E. (1955). Maintenance of genetic heterogeneity. Cold Spring Harbor Symp. Quant. Biol., 20, 25–32.

    Article  Google Scholar 

  • Dombry, C., Mazza, C., & Bansaye, V. (2011). Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Probab., 43, 375–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Donaldson-Matasci, M., Lachmann, M., & Bergstrom, C. (2008). Phenotypic diversity as an adaptation to environmental uncertainty. Evol. Ecol. Res., 10, 493–515.

    Google Scholar 

  • Donaldson-Matasci, M., Bergstrom, C., & Lachmann, M. (2010). The fitness value of information. Oikos, 119, 219–230.

    Article  Google Scholar 

  • Furstenberg, H., & Kesten, H. (1960). Products of random matrices. Ann. Math. Stat., 31, 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  • Grafen, A. (1999). Formal darwinism, the individual-as-maximizing-agent analogy and bet-hedging. Proc. R. Soc. Lond. B, 266, 799–803.

    Article  Google Scholar 

  • Haccou, P., & Iwasa, Y. (1995). Optimal mixed strategies in stochastic environments. Theor. Popul. Biol., 47, 212–243.

    Article  MATH  Google Scholar 

  • Haccou, P., Jagers, P., & Vatutin, V. (2005). Branching processes: variation, growth, and extinction of populations. Cambridge: Cambride University Press.

    Book  MATH  Google Scholar 

  • Hutton, J. (1987). Incubation temperatures, sex ratios and sex determination in a population of nile crocodiles (crocodylus niloticus). J. Zool., 211, 143–155.

    Article  Google Scholar 

  • Jost, J., & Pepper, J. (2008). Individual optimization efforts and population dynamics: a mathematical model for the evolution of resource allocation strategies, with applications to reproductive and mating systems. Theory Biosci., 127(1), 31–43.

    Article  Google Scholar 

  • Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth and information in fluctuating environments. Science, 309, 2075–2078.

    Article  Google Scholar 

  • Levins, R. (1962). The theory of fitness in a heterogeneous environment, I: the fitness set and adaptive function. Am. Nat., 96, 361–373.

    Article  Google Scholar 

  • Levins, R. (1968). Evolution in changing environments. Princeton: Princeton University Press.

    Google Scholar 

  • Seger, J., & Brockmann, H. (1987). What is bet-hedging? In P. Harvey & L. Partridge (Eds.), Oxford surveys in evolutionary biology (Vol. 4, pp. 182–211). Oxford: Oxford University Press.

    Google Scholar 

  • Simons, A. (2009). Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proc. R. Soc. B, 276, 1987–1992.

    Article  Google Scholar 

  • Simons, A. (2011). Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B, 278, 1601–1609.

    Article  Google Scholar 

  • Smith, W., & Wilkinson, W. (1969). On branching processes in random environments. Ann. Math. Stat., 40, 814–827.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanny, D. (1977). Limit theorems for branching processes in a random environment. Ann. Probab., 5(1), 100–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanny, D. (1981). On multitype branching processes in random environments. Adv. Appl. Probab., 13, 464–497.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuljapurkar, S. (1982). Population dynamics in variable environments, III: evolutionary dynamics of r-selection. Theor. Popul. Biol., 21, 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuljapurkar, S. (1990). Population dynamics in variable environments. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Valenzuela, N. & Lance, V. (Eds.) (2004). Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books.

    Google Scholar 

  • Wang, Y. (2010). Branching processes: optimization, variational characterization, and continuous approximation. Ph.D. thesis, University of Leipzig.

  • Wang, Y. (2013a). Variational characterization of multitype galton-watson branching processes. Acta Math. Appl. Sin. doi:10.1007/s10255-014-0266-2.

  • Wang, Y. (2013b). Parallel mutation-reproduction processes in random environments. Commun. Stoch. Anal., 7(1), 113–123.

    MathSciNet  Google Scholar 

  • Wilkinson, W. (1969). On calculating extinction probabilities for branching processes in random environments. J. Appl. Probab., 6, 478–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshimura, J., & Clark, C. (1991). Individual adaptations in stochastic environments. Evol. Ecol., 5, 173–192.

    Article  Google Scholar 

  • Yoshimura, J., & Jansen, V. (1996). Evolution and population dynamics in stochastic environments. Res. Popul. Ecol., 38, 165–182.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Rüdiger Frey for helpful discussions and comments. We would like to thank the referees for their thoughtful comments and suggestions, especially for drawing our attention to Brennan and Lo (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, J., Wang, Y. Optimization and Phenotype Allocation. Bull Math Biol 76, 184–200 (2014). https://doi.org/10.1007/s11538-013-9915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9915-5

Keywords

Navigation