Skip to main content
Log in

Analysis and Characterization of Asynchronous State Transition Graphs Using Extremal States

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Logical modeling of biological regulatory networks gives rise to a representation of the system’s dynamics as a so-called state transition graph. Analysis of such a graph in its entirety allows for a comprehensive understanding of the functionalities and behavior of the modeled system. However, the size of the vertex set of the graph is exponential in the number of the network components making analysis costly, motivating development of reduction methods. In this paper, we present results allowing for a complete description of an asynchronous state transition graph of a Thomas network solely based on the analysis of the subgraph induced by certain extremal states. Utilizing this notion, we compare the behavior of a simple multivalued network and a corresponding Boolean network and analyze the conservation of dynamical properties between them. Understanding the relation between such coarser and finer models is a necessary step toward meaningful network reduction as well as model refinement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Jaoudé, W., Ouattara, D. A., & Kaufman, M. (2009). From structure to dynamics: frequency tuning in the p53-Mdm2 network: I. Logical approach. J. Theor. Biol., 258(4), 561–577.

    Article  Google Scholar 

  • Aracena, J. (2008). Maximum number of fixed points in regulatory boolean networks. Bull. Math. Biol., 70(5), 1398–1409. .

    Article  MathSciNet  MATH  Google Scholar 

  • Bernot, G., & Tahi, F. (2009). Behaviour preservation of a biological regulatory network when embedded into a larger network. Fundam. Inform., 91(3–4), 463–485.

    MathSciNet  MATH  Google Scholar 

  • Didier, G., Remy, E., & Chaouiya, C. (2011). Mapping multivalued onto boolean dynamics. J. Theor. Biol., 270(1), 177–184.

    Article  MathSciNet  Google Scholar 

  • Mabrouki, M., Aiguier, M., Comet, J. P., Gall, P. L., & Richard, A. (2011). Embedding of biological regulatory networks and properties preservation. Math. Comput. Sci., 5(3), 263–288.

    Article  MathSciNet  Google Scholar 

  • Naldi, A., Carneiro, J., Chaouiya, C., & Thieffry, D. (2010). Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput. Biol., 6(9), e1000912.

    Article  Google Scholar 

  • Naldi, A., Remy, E., Thieffry, D., & Chaouiya, C. (2011). Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci., 412(21), 2207–2218.

    Article  MathSciNet  MATH  Google Scholar 

  • Remy, E., & Ruet, P. (2008). From minimal signed circuits to the dynamics of boolean regulatory networks. Bioinformatics, 24(16), i200–i226.

    Article  Google Scholar 

  • Remy, E., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv. Appl. Math., 41(3), 335–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez, L., Chaouiya, C., & Thieffry, D. (2008). Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol., 52, 1059–1075.

    Article  Google Scholar 

  • Siebert, H. (2011). Analysis of discrete bioregulatory networks using symbolic steady states. Bull. Math. Biol., 73(4), 873–898.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, R. (1973). Boolean formalization of genetic control circuits. J. Theor. Biol., 42(3), 565–583.

    Article  Google Scholar 

  • Thomas, R., & d’Ari, R. (1990). Biological feedback. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11, 180–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Tournier, L., & Chaves, M. (2009). Uncovering operational interactions in genetic networks using asynchronous boolean dynamics. J. Theor. Biol., 260(2), 196–209.

    Article  MathSciNet  Google Scholar 

  • Veliz-Cuba, A. (2011). Reduction of boolean network models. J. Theor. Biol., 289, 167–172.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bockmayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, T., Siebert, H. & Bockmayr, A. Analysis and Characterization of Asynchronous State Transition Graphs Using Extremal States. Bull Math Biol 75, 920–938 (2013). https://doi.org/10.1007/s11538-012-9782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9782-5

Keywords

Navigation