Skip to main content
Log in

Probing Multipartite Entanglement Through Persistent Homology

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a study of multipartite entanglement through persistent homology, a tool used in topological data analysis. In persistent homology, a 1-parameter filtration of simplicial complexes called a persistence complex is used to reveal persistent topological features of the underlying data set. This is achieved via the computation of homological invariants that can be visualized as a persistence barcode encoding all relevant topological information. In this work, we apply this technique to study multipartite quantum systems by interpreting the individual systems as vertices of a simplicial complex. To construct a persistence complex from a given multipartite quantum state, we use a generalization of the bipartite mutual information called the deformed total correlation. Computing the persistence barcodes of this complex yields a visualization or ‘topological fingerprint’ of the multipartite entanglement in the quantum state. The barcodes can also be used to compute a topological summary called the integrated Euler characteristic of a persistence complex. We show that in our case this integrated Euler characteristic is equal to the deformed interaction information, another multipartite version of mutual information. When choosing the linear entropy as the underlying entropy, this deformed interaction information coincides with the n-tangle, a well-known entanglement measure. The persistence barcodes thus provide more fine-grained information about the entanglement structure than its topological summary, the n-tangle, alone, which we illustrate with examples of pairs of states with identical n-tangle but different barcodes. Furthermore, a variant of persistent homology computed relative to a fixed subset yields an interesting connection to strong subadditivity and entropy inequalities. We also comment on a possible generalization of our approach to arbitrary resource theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

MATLAB code to reproduce the numerical results in Section 4 is available at https://github.com/felixled/entanglement_persistent_homology.

Notes

  1. This construction can also be understood in terms of category theory: Define an \({\mathbb {R}}\)-indexed sublevel set filtration functor \(G:{\mathbb {R}} \rightarrow \text {{\textbf {Simp}}}\) by \(G(\varepsilon )_{\rho } = \{J \in \Delta | F(J)_{\rho } \le \varepsilon \} \), which satisfies \(G(\varepsilon )_{\rho } \le G(\varepsilon ')_{\rho }\) when \(\varepsilon \le \varepsilon '\). Here, Simp denotes the category of simplicial complexes. Denoting by \(H_{k}\) the k-th homology functor with coefficients in a field K, and by Vec the category of vector spaces over K, the functor \(P_{k} \equiv H_{k}G:{\mathbb {R}} \rightarrow {{\textbf {Vec}}}\) can be identified with the persistence module defined above.

  2. MATLAB code to reproduce the results shown here is available at https://github.com/felixled/entanglement_persistent_homology.

  3. For example, for the graph \(G_1\) shown in the top row of Fig. 2, there are 5 (finite) 0-dim. barcodes of length 1/4 each, 6 1-dim. barcodes of length 1/4 and 4 1-dim. barcodes of length 1/2, 10 2-dim. barcodes of length 1/2, 4 3-dim. barcodes of length 1/2 and one 3-dim. barcode of length 3/4, and finally one 4-dim. barcode of length 1. It follows that

    $$\begin{aligned} \tau _n = 1 = 5\cdot \frac{1}{4} - 4\cdot \frac{1}{2} - 6\cdot \frac{1}{4}+10 \cdot \frac{1}{2} -4 \cdot \frac{1}{2}- \frac{3}{4}+1. \end{aligned}$$
    (4.36)
  4. A simple heuristic approach to speed up the computation of the simplicial complex \(G(\varepsilon )\) for a given filtration parameter \(\varepsilon \) is the following. Recall that a simplex \(J\subseteq {\mathcal {A}}\) is added to \(G(\varepsilon )\) if \(F(J)\le \varepsilon \), and that F is monotonic under taking partial traces, \(F(J)\le F(K)\) if \(J\subseteq K\). Hence, in order to build the simplicial complex of an n-qubit system (where \(n=|{\mathcal {A}}|\)), it is advantageous to start at the top of the subset lattice and first evaluate F on the n subsets of size \(n-1\), then on the \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) \) subsets of size \(n-2\), etc. As soon as \(F(K)\le \varepsilon \) for some \(K\subseteq {\mathcal {A}}\), we automatically add all subsets \(J\subseteq K\) to the complex as well and move to the next subset of size |K|.

References

  1. Audenaert, K.M.R.: Subadditivity of \(q\)-entropies for \(q \ge 1\). J. Math. Phys. 48(8), 083507 (2007). https://doi.org/10.1063/1.2771542. arXiv:0705.1276 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  2. Baudot, P.: The Poincaré-Boltzmann machine: from statistical physics to machine learning and back’. arXiv preprint (2019). arXiv:1907.06486 [q-bio.NC]

  3. Baudot, P., Bennequin, D.: The homological nature of entropy. Entropy 17(5), 3253–3318 (2015). https://doi.org/10.3390/e17053253

    Article  ADS  MathSciNet  Google Scholar 

  4. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. (2015). https://doi.org/10.20382/jocg.v6i2a9. arXiv:1311.3681 [math.AT]

    Article  MathSciNet  Google Scholar 

  5. Beckey, J.L., Gigena, N., Coles, P.J., Cerezo, M.: Computable and operationally meaningful multipartite entanglement measures. Phys. Rev. Lett. 127(14), 140501 (2021). https://doi.org/10.1103/PhysRevLett.127.140501. arXiv:2104.06923 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  Google Scholar 

  8. Bobrowski, O., Borman, M.S.: Euler integration of Gaussian random fields and persistent homology. J. Topol. Anal. 04(01), 49–70 (2012). https://doi.org/10.1142/S1793525312500057. arXiv:1003.5175 [math.PR]

    Article  MathSciNet  Google Scholar 

  9. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649–R4652 (1996). https://doi.org/10.1103/PhysRevA.54.R4649

    Article  ADS  Google Scholar 

  10. Briand, E., Luque, J.-G., Thibon, J.-Y.: A complete set of covariants of the four qubit system. J. Phys. A Math. Gen. 36(38), 9915 (2003). https://doi.org/10.1088/0305-4470/36/38/309. arXiv:quant-ph/0304026

    Article  ADS  MathSciNet  Google Scholar 

  11. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23(8), 1693–1708 (1981). https://doi.org/10.1103/PhysRevD.23.1693

    Article  ADS  Google Scholar 

  12. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019). https://doi.org/10.1103/RevModPhys.91.025001. arXiv:1806.06107 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  13. Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328(1), 303–326 (2014). https://doi.org/10.1007/s00220-014-1953-9. arXiv:1210.4583 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  14. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000). https://doi.org/10.1103/PhysRevA.61.052306. arXiv:quant-ph/9907047

    Article  ADS  Google Scholar 

  15. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007). https://doi.org/10.1007/s00454-006-1276-5

    Article  MathSciNet  Google Scholar 

  16. Di Pierro, A., Mancini, S., Memarzadeh, L., Mengoni, R.: Homological analysis of multi-qubit entanglement. Europhys. Lett. 123(3), 30006 (2018). https://doi.org/10.1209/0295-5075/123/30006. arXiv:1802.04572 [quant-ph]

    Article  Google Scholar 

  17. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314. arXiv:quant-ph/0005115

    Article  ADS  MathSciNet  Google Scholar 

  18. Edelsbrunner, Letscher, Zomorodian.: Topological persistence and simplification. Discrete Comput. Geom. 28(4) 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

  19. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  Google Scholar 

  20. Eltschka, C., Siewert, J.: Distribution of entanglement and correlations in all finite dimensions. Quantum 2, 64 (2018). https://doi.org/10.22331/q-2018-05-22-64. arXiv:1708.09639 [quant-ph]

    Article  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). https://doi.org/10.1126/science.1104149. arXiv:quantph/0412078

    Article  ADS  Google Scholar 

  22. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760), 390–393 (1999). https://doi.org/10.1038/46503

    Article  ADS  Google Scholar 

  23. Gour, G., Wallach, N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111(6), 060502 (2013). https://doi.org/10.1103/PhysRevLett.111.060502. arXiv:1304.7259 [quant-ph]

    Article  ADS  Google Scholar 

  24. Grassl, M., Rötteler, M., Beth, T.: Computing local invariants of quantum-bit systems. Phys. Rev. A 58(3), 1833–1839 (1998). https://doi.org/10.1103/PhysRevA.58.1833. arXiv:quant-ph/9712040

    Article  ADS  MathSciNet  Google Scholar 

  25. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72(3), 032317 (2005). https://doi.org/10.1103/PhysRevA.72.032317. arXiv:quantph/0410091

    Article  ADS  MathSciNet  Google Scholar 

  26. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  27. Hayden, P., Nezami, S., Qi, X.-L., Thomas, N., Walter, M., Yang, Z.: Holographic duality from random tensor networks. J. High Energy Phys. 2016(11), 9 (2016). https://doi.org/10.1007/JHEP11(2016)009. arXiv:1601.01694 [hep-th]

    Article  MathSciNet  Google Scholar 

  28. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.-J.: Entanglement in graph states and its applications. In: Quantum Computers, Algorithms and Chaos, pp. 115–218. IOS Press, Amsterdam (2006) . arXiv:quant-ph/0602096

    Google Scholar 

  29. Herbut, F.: On mutual information in multipartite quantum states and equality in strong subadditivity of entropy. J. Phys. A Math. Gen. 37(10), 3535 (2004). https://doi.org/10.1088/0305-4470/37/10/016. arXiv:quant-ph/0311193

    Article  ADS  MathSciNet  Google Scholar 

  30. Holland, M.J.: Burnett : interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71(9), 1355–1358 (1993). https://doi.org/10.1103/PhysRevLett.71.1355

    Article  ADS  Google Scholar 

  31. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865. arXiv:quant-ph/0702225

    Article  ADS  MathSciNet  Google Scholar 

  32. Hosur, P., Qi, X.-L., Roberts, D.A., Yoshida, B.: Chaos in quantum channels. J. High Energy Phys. 2016(2), 4 (2016). https://doi.org/10.1007/JHEP02(2016)004. arXiv:1511.04021 [hep-th]

    Article  MathSciNet  Google Scholar 

  33. Jaeger, G., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems. Phys. Rev. A 68(2), 022318 (2003). https://doi.org/10.1103/PhysRevA.68.022318. arXiv:quant-ph/0307124

    Article  ADS  MathSciNet  Google Scholar 

  34. Jaeger, G., Teodorescu-Frumosu, M., Sergienko, A., Saleh, B.E.A., Teich, M.C.: Multiphoton Stokes-parameter invariant for entangled states. Phys. Rev. A 67(3), 032307 (2003). https://doi.org/10.1103/PhysRevA.67.032307. arXiv:quant-ph/0301128

    Article  ADS  Google Scholar 

  35. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speedup. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003). https://doi.org/10.1098/rspa.2002.1097. arXiv:quant-ph/0201143

    Article  ADS  MathSciNet  Google Scholar 

  36. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96(11), 110404 (2006). https://doi.org/10.1103/PhysRevLett.96.110404. arXiv:hep-th/0510092

    Article  ADS  MathSciNet  Google Scholar 

  37. Klyachko, A.: Dynamical symmetry approach to entanglement. NATO Secur. Sci. Ser. D-Inf. Commun. Secur. 7, 25 (2007). arXiv:0802.4008 [quant-ph]

    MathSciNet  Google Scholar 

  38. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001). https://doi.org/10.1038/35051009

    Article  ADS  Google Scholar 

  39. Leditzky, F., Kaur, E., Datta, N., Wilde, M.M.: Approaches for approximate additivity of the Holevo information of quantum channels. Phys. Rev. A 97, 012332 (2018). https://doi.org/10.1103/PhysRevA.97.012332. arXiv:1709.01111 [quant-ph]

    Article  ADS  Google Scholar 

  40. Leung, D.W.: Quantum computation by measurements. Int. J. Quantum Inf. 02(01), 33–43 (2004). https://doi.org/10.1142/S0219749904000055. arXiv:quant-ph/0310189

    Article  Google Scholar 

  41. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973). https://doi.org/10.1063/1.1666274

    Article  ADS  MathSciNet  Google Scholar 

  42. Liu, G., Wu, P., Kim, H., Junge, M.: Quantum secret sharing and tripartite information. In : 2023 IEEE International Symposium on Information Theory (ISIT). 1931–1936 (2023). https://doi.org/10.1109/ISIT54713.2023.10206477. arXiv:2012.08445 [quant-ph]

  43. Luque, J.-G., Thibon, J.-Y.: Algebraic invariants of five qubits. J. Phys. A Math. Gen. 39(2), 371 (2005). https://doi.org/10.1088/0305-4470/39/2/007. arXiv:quant-ph/0506058

    Article  ADS  MathSciNet  Google Scholar 

  44. Mainiero, T.: Homological tools for the quantum mechanic. arXiv preprint (2019). arXiv:1901.02011 [hep-th]

  45. Mengoni, R., Di Pierro, A., Memarzadeh, L., Mancini, S.: Persistent homology analysis of multiqubit entanglement. Quantum Inf. Comput. 20(5), 375–399 (2019). https://doi.org/10.48550/ARXIV.1907.06914. arXiv:1907.06914 [quant-ph]

    Article  MathSciNet  Google Scholar 

  46. Nezami, S., Walter, M.: Multipartite entanglement in stabilizer tensor networks. Phys. Rev. Lett. 125(24), 241602 (2020). https://doi.org/10.1103/PhysRevLett.125.241602. arXiv:1608.02595 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  47. Nielsen, M.A.: Quantum computation by measurement and quantum memory. Phys. Lett. A 308(2), 96–100 (2003). https://doi.org/10.1016/S0375-9601(02)01803-0. arXiv:quant-ph/0108020

    Article  ADS  MathSciNet  Google Scholar 

  48. Olsthoorn, B.: Persistent homology of quantum entanglement. Phys. Rev. B 107(11), 115174 (2023). https://doi.org/10.1103/PhysRevB.107.115174. arXiv:2110.10214 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  49. Osterloh, A., Siewert, J.: Constructing \(N\)-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72(1), 012337 (2005). https://doi.org/10.1103/PhysRevA.72.012337. arXiv:quant-ph/0410102

    Article  ADS  Google Scholar 

  50. Osterloh, A., Siewert, J.: Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quantum Inf. 04(03), 531–540 (2006). https://doi.org/10.1142/S0219749906001980. arXiv:quant-ph/0506073

    Article  Google Scholar 

  51. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6, 1–38 (2017). https://doi.org/10.1140/epjds/s13688-017-0109-5. arXiv:1506.08903 [math.AT]

    Article  Google Scholar 

  52. Raggio, G.A.: Properties of q-entropies. J. Math. Phys. 36(9), 4785–4791 (1995). https://doi.org/10.1063/1.530920

    Article  ADS  MathSciNet  Google Scholar 

  53. Rains, E.: Polynomial invariants of quantum codes. IEEE Trans. Inf. Theory 46(1), 54–59 (2000). https://doi.org/10.1109/18.817508. arXiv:quant-ph/9704042

    Article  MathSciNet  Google Scholar 

  54. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  ADS  Google Scholar 

  55. Raussendorf, R., Briegel, H.J.: Computational model underlying the one-way quantum computer. Quantum Inf. Comput. 2(6), 443–486 (2002). arXiv:quantph/0108067

    MathSciNet  Google Scholar 

  56. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003). https://doi.org/10.1103/PhysRevA.68.022312. arXiv:quantph/0301052

    Article  ADS  Google Scholar 

  57. Schatzki, L., Ma, L., Solomonik, E., Chitambar, E.: Tensor rank and other multipartite entanglement measures of graph states. arXiv preprint (2022). arXiv:2209.06320 [quant-ph]

  58. Schnaack, O., Bölter, N., Paeckel, S., Manmana, S.R., Kehrein, S., Schmitt, M.: Tripartite information, scrambling, and the role of Hilbert space partitioning in quantum lattice models. Phys. Rev. B 100(22), 224302 (2019). https://doi.org/10.1103/PhysRevB.100.224302. arXiv:1808.05646 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  59. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  ADS  MathSciNet  Google Scholar 

  60. Skraba, P., Thoppe, G., Yogeshwaran, D.: Randomly weighted \(d-\)complexes: minimal spanning acycles and persistence diagrams. Electr. J. Comb. (2020). https://doi.org/10.37236/8679. arXiv:1701.00239 [math.PR]

    Article  MathSciNet  Google Scholar 

  61. Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008). https://doi.org/10.1126/science.1162242. arXiv:0807.4935 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  62. Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: a research software package for persistent (co)homology. In: Proceedings of ICMS 2014. Ed. by H. Hong and C. Yap. Lecture Notes in Computer Science 8592. 129–136 (2014). Software available at http://appliedtopology.github.io/javaplex/

  63. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  64. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997). https://doi.org/10.1103/PhysRevLett.78.2275. arXiv:quant-ph/9702027

    Article  ADS  MathSciNet  Google Scholar 

  65. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002). https://doi.org/10.1103/PhysRevA.65.052112. arXiv:quant-ph/0109033

    Article  ADS  MathSciNet  Google Scholar 

  66. Verstraete, F., Dehaene, J., De Moor, B.: Normal forms and entanglement measures for multipartite quantum states. Phys. Rev. A 68(1), 012103 (2003). https://doi.org/10.1103/PhysRevA.68.012103. arXiv:quantph/0105090

    Article  ADS  MathSciNet  Google Scholar 

  67. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47(2–3), 355–376 (2000). https://doi.org/10.1080/09500340008244048. arXiv:quant-ph/9807077

    Article  ADS  MathSciNet  Google Scholar 

  68. Vigneaux, J.P.: Information structures and their cohomology. Theory Appl. Categ. 35(38), 1476–1529 (2020). arXiv:1709.07807 [cs.IT]

    MathSciNet  Google Scholar 

  69. Walter, M.: Personal communication. (2023)

  70. Walter, M., Doran, B., Gross, D., Christandl, M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340(6137), 1205–1208 (2013). https://doi.org/10.1126/science.1232957. arXiv:1208.0365 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  71. Watanabe, S.: Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4(1), 66–82 (1960). https://doi.org/10.1147/rd.41.0066

    Article  MathSciNet  Google Scholar 

  72. Wilde, M.M.: Multipartite quantum correlations and local recoverability. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2177), 20140941 (2015). https://doi.org/10.1098/rspa.2014.0941. arXiv:1412.0333 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  73. Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50(1), 67–88 (1994). https://doi.org/10.1103/PhysRevA.50.67

    Article  ADS  Google Scholar 

  74. Wong, A., Christensen, N.: Potential multiparticle entanglement measure. Phys. Rev. A 63(4), 044301 (2001). https://doi.org/10.1103/PhysRevA.63.044301. arXiv:quant-ph/0010052

    Article  ADS  Google Scholar 

  75. Yang, D., Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J., Song, W.: Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inf. Theory 55(7), 3375–3387 (2009). https://doi.org/10.1109/TIT.2009.2021373. arXiv:0704.2236 [quant-ph]

    Article  MathSciNet  Google Scholar 

  76. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005). https://doi.org/10.1007/s00454-004-1146-y

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful conversations with Henry Adams, Yuliy Baryshnikov, Jacob Beckey, Eric Chitambar, Jens Siewert, Juan Pablo Vigneaux, Michael Walter and Shmuel Weinberger. This research was partially supported through the IBM-Illinois Discovery Accelerator Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Hamilton.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by A. Childs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, G.A., Leditzky, F. Probing Multipartite Entanglement Through Persistent Homology. Commun. Math. Phys. 405, 125 (2024). https://doi.org/10.1007/s00220-024-04953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04953-4

Navigation