Skip to main content

Advertisement

Log in

Evolution of Complex Density-Dependent Dispersal Strategies

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol., 22, 1117–1129.

    Article  Google Scholar 

  • Balkau, B. J., & Feldman, M. W. (1973). Selection for migration modification. Genetics, 74, 171–174.

    MathSciNet  Google Scholar 

  • Bull, J. J., Thompson, C., Ng, D., & Moore, R. (1987). A model for natural selection of genetic migration. Am. Nat., 129, 143–157.

    Article  Google Scholar 

  • Cadet, C., Ferrière, R., Metz, J. A. J., & van Baalen, M. (2003). The evolution of dispersal under demographic stochasticity. Am. Nat., 162, 427–441.

    Article  Google Scholar 

  • Chitty, D. (1967). The natural selection of self-regulatory behavior in animal populations. Proc. Ecol. Soc. Aust., 2, 51–78.

    Google Scholar 

  • Comins, H. N. (1985). Evolutionarily stable dispersal strategies for localized dispersal in two dimensions. J. Theor. Biol., 94, 579–606.

    Article  MathSciNet  Google Scholar 

  • Comins, H. N., Hamilton, W. D., & May, R. M. (1980). Evolutionarily stable dispersal strategies. J. Theor. Biol., 82, 205–230.

    Article  MathSciNet  Google Scholar 

  • Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579–612.

    Article  MathSciNet  MATH  Google Scholar 

  • Dieckmann, U., Heino, M., & Parvinen, K. (2006). The adaptive dynamics of function-valued traits. J. Theor. Biol., 241, 370–389.

    Article  MathSciNet  Google Scholar 

  • Dobson, F. S., & Jones, W. T. (1985). Multiple causes of dispersal. Am. Nat., 126, 855–858.

    Article  Google Scholar 

  • Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741.

    Article  Google Scholar 

  • Durinx, M., Metz, J. A. J., & Meszéna, G. (2008). Adaptive dynamics for physiologically structured population models. J. Math. Biol., 56, 673–742.

    Article  MathSciNet  MATH  Google Scholar 

  • Errington, P. L. (1946). Predation and vertebrate populations. Q. Rev. Biol., 21, 144–177.

    Article  Google Scholar 

  • Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 155–167). London: Oxford University Press.

    Google Scholar 

  • Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–2027.

    Article  Google Scholar 

  • Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Geritz, S., Gyllenberg, M., & Ondráček, P. (2009). Evolution of density-dependent dispersal in a structured metapopulation. Math. Biosci., 219, 142–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Greenwood, P. J., Harvey, P. H., & Perrins, C. M. (1978). Inbreeding and dispersal in great tit. Nature, 271, 52–54.

    Article  Google Scholar 

  • Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations. J. Math. Biol., 43, 545–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45, 79–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Kisdi, E., & Utz, M. (2008). Evolution of condition-dependent dispersal under kin competition. J. Math. Biol., 57(2), 285–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Kisdi, É., & Utz, M. (2011a). Body condition dependent dispersal in a heterogeneous environment. Theor. Popul. Biol., 79, 139–154.

    Article  Google Scholar 

  • Gyllenberg, M., Kisdi, É., & Utz, M. (2011b). Variability within families and the evolution of body condition dependent dispersal. J. Biol. Dyn., 5, 191–211.

    Article  MathSciNet  Google Scholar 

  • Hamilton, W. D. (1964a). The genetical evolution of social behaviour. I. J. Theor. Biol., 7, 1–16.

    Article  Google Scholar 

  • Hamilton, W. D. (1964b). The genetical evolution of social behaviour. II. J. Theor. Biol., 7, 17–52.

    Article  Google Scholar 

  • Hamilton, W. D., & May, R. M. (1977). Dispersal in stable habitats. Nature, 269, 578–581.

    Article  Google Scholar 

  • Hanski, I. (2005). The shrinking world: ecological consequences of habitat loss. Oldendorf/Luhe: International Ecology Institute.

    Google Scholar 

  • Hanski, I., & Mononen, T. (2011). Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Ecol. Lett., 14, 1025–1034.

    Article  Google Scholar 

  • Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 24, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Hepburn, H. R. (2006). Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. In V. E. Kipyatkov (Ed.), Life cycles in social insects: behaviour, ecology and evolution (pp. 121–135). St. Petersburg: St. Petersburg University Press.

    Google Scholar 

  • Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol., 28, 181–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Holt, R. D., & McPeek, M. (1996). Chaotic population dynamics favors the evolution of dispersal. Am. Nat., 148, 709–718.

    Article  Google Scholar 

  • Kisdi, É. (2002). Dispersal: risk spreading versus local adaptation. Am. Nat., 159, 579–596.

    Article  Google Scholar 

  • Kisdi, É. (2004). Conditional dispersal under kin competition: extension of the Hamilton–May model brood size-dependent dispersal. Theor. Popul. Biol., 66, 369–380.

    Article  MATH  Google Scholar 

  • Korona, R. (1991). Genetic-basis of behavioral strategies—dispersal of female flour beetles, Tribolium confusum, in a laboratory system. Oikos, 62(3), 265–270.

    Article  Google Scholar 

  • Krebs, C. J., Wingate, I., Leduc, J., Redfield, J., Taitt, M., & Hilborn, R. (1976). Microtus population biology—dispersal in fluctuating populations of Microtus townsendii. Can. J. Zool., 54, 79–95.

    Article  Google Scholar 

  • Kuno, E. (1981). Dispersal and the persistence of populations in unstable habitats: a theoretical note. Oecologia, 49, 123–126.

    Article  Google Scholar 

  • Lack, D. (1966). Population studies of birds. Oxford: Oxford University Press.

    Google Scholar 

  • Lambin, X., Aars, J., & Piertney, S. B. (2001). Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 110–122). London: Oxford University Press.

    Google Scholar 

  • Lawson-Handley, L. J., & Perrin, N. (2007). Advances in our understanding of mammalian sex-biased dispersal. Mol. Ecol., 16, 1559–1578.

    Article  Google Scholar 

  • Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2005). Adaptive evolution of social traits: origin, trajectories and correlations of altruism and mobility. Am. Nat., 165, 206–224.

    Article  Google Scholar 

  • Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography, 28, 403–416.

    Article  Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. London: Oxford University Press.

    Google Scholar 

  • Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B, Biol. Sci., 268, 499–508.

    Article  Google Scholar 

  • Metz, J. A. J., Jong, T. J., & Klinkhamer, P. G. L. (1983). What are the advantages of dispersing: a paper by Kuno explained and extended. Oecologia, 57, 166–169.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland.

    Google Scholar 

  • Moore, J., & Ali, R. (1982). Are dispersal and inbreeding avoidance related? Anim. Behav., 32, 94–112.

    Article  Google Scholar 

  • Motro, U. (1982a). Optimal rates of dispersal I. Haploid populations. Theor. Popul. Biol., 21, 394–411.

    Article  MathSciNet  MATH  Google Scholar 

  • Motro, U. (1982b). Optimal rates of dispersal II. Diploid populations. Theor. Popul. Biol., 21, 412–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Motro, U. (1983). Optimal rates of dispersal III. Parent offspring conflict. Theor. Popul. Biol., 23, 159–168.

    Article  MATH  Google Scholar 

  • Nagy, J. D. (1996). Evolutionarily attracting dispersal strategies in vertebrate metapopulations. Ph.D. thesis, Arizona State University, Tempe, AZ, USA.

  • Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations. J. Theor. Biol., 275, 78–92.

    Article  Google Scholar 

  • Ogden, J. C. (1970a). Artificial selection for dispersal in flour beetles (tenebrionidae: Tribolium). Ecology, 51, 130–133.

    Article  Google Scholar 

  • Ogden, J. C. (1970b). Aspects of dispersal in tribolium flour beetles. Physiol. Zool., 42, 124–131.

    Google Scholar 

  • Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol., 61, 531–550.

    Article  Google Scholar 

  • Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol., 45, 106–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68, 655–678.

    Article  MathSciNet  Google Scholar 

  • Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide? Bull. Math. Biol., 73, 2605–2626.

    Article  MathSciNet  Google Scholar 

  • Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73, 517–528.

    Article  MATH  Google Scholar 

  • Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., 16, 143–153.

    Article  Google Scholar 

  • Parvinen, K., Dieckmann, U., & Heino, M. (2006). Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol., 52, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Parvinen, K., Heino, M., & Dieckmann, U. (2012). Function-valued adaptive dynamics and optimal control theory. J. Math. Biol. doi:10.1007/s00285-012-0549-2.

    Google Scholar 

  • Peacock, M. M., & Smith, A. T. (1997). The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia, 112, 524–533.

    Article  Google Scholar 

  • Perrin, N., & Goudet, J. (2001). Inbreeding, kinship, and the evolution of natal dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 123–142). London: Oxford University Press.

    Google Scholar 

  • Perrins, C. (2008). Survival of young swifts in relation to brood size. Nature, 201, 1147–1148.

    Article  Google Scholar 

  • Roff, D. (1977). Dispersal in dipterans—its costs and consequences. J. Anim. Ecol., 46, 443–456.

    Article  Google Scholar 

  • Roff, D. A., & Fairbairn, D. J. (2001). The genetic basis of dispersal and migration, and its consequences for the evolution of correlated traits. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 191–202). London: Oxford University Press.

    Google Scholar 

  • Ronce, O., & Olivieri, I. (2004). Life history evolution in metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, genetics, and evolution of metapopulations (pp. 227–257). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Ronce, O., Perret, F., & Olivieri, I. (2000a). Evolutionarily stable dispersal rates do not always increase with local extinction rates. Am. Nat., 155, 485–496.

    Article  Google Scholar 

  • Ronce, O., Perret, F., & Olivieri, I. (2000b). Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation. Evol. Ecol., 14, 233–260.

    Article  Google Scholar 

  • Smith, A. T. (1974a). The distribution and dispersal of pikas: consequences of insular population structure. Ecology, 55, 1112–1119.

    Article  Google Scholar 

  • Smith, A. T. (1974b). The distribution and dispersal of pikas: influences of behaviour and climate. Ecology, 55, 1368–1376.

    Article  Google Scholar 

  • Smith, A. T. (1980). Temporal changes in insular populations of the pika (ochotona princeps). Ecology, 61, 8–13.

    Article  Google Scholar 

  • Teague, R. (1977). A model of migration modification. Theor. Popul. Biol., 12, 86–94.

    Article  Google Scholar 

  • Van Valen, L. (1971). Group selection and the evolution of dispersal. Evolution, 25, 591–598.

    Article  Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank two anonymous reviewers for valuable remarks to improve this manuscript. This study was funded by the Academy of Finland, project number 128323 to K.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Seppänen.

Appendix: Relatedness and the Benefit of Dispersal

Appendix: Relatedness and the Benefit of Dispersal

According to Hamilton’s rule (Hamilton 1964a, 1964b), a costly altruistic behavior can evolve if the cost to the actor, C, is less than R g B, where R g is the genetic relatedness between the actor and the recipient, and B is the fitness benefit to the recipient. To study how kin-cooperation and kin-competition act as evolutionary forces driving dispersal rates in the metapopulation, we therefore need to define a relatedness measure. Costs and benefits can be measured in terms of the fitness proxy (Metz and Gyllenberg 2001), which is the expected amount of successful mutant dispersers emigrated from a clan initiated by a single mutant immigrant over the life span of the colony:

$$ R_{\mathrm{metapop}}=\pi\sum_{n=0}^{K-1}\sum _{n'=1}^{K-n}e'_{n+n'}n'w_{n,n'}, $$
(6)

where w n,n is the expected amount of time that an average clan will spend in a state with n residents and n′ mutants. For a detailed explanation and a method to calculate w n,n, see Metz and Gyllenberg (2001) and Parvinen and Metz (2008). Relatedness must therefore also be defined in terms of the clan in the special case that the mutant and resident strategies are the same (note that therefore we are only considering an approximation where we assume that the difference of the mutant and resident is so slight that we can neglect the alteration of the population dynamics brought about by the presence of mutants). Our density-dependent relatedness measure is the probability throughout the life-time of the colony that a randomly chosen individual is a mutant, with the condition that the local population size in the patch at the sampling moment is equal to k:

$$ \rho_{k}=\frac{\sum_{i+j=k}w_{i,j}\frac{j}{i+j}}{\sum_{i+j=k}w_{i,j}}. $$
(7)

We can decompose the invasion fitness proxy into parts

$$ R_{\mathrm{metapop}}=\pi\sum_{k=0}^{K-1}E_{k+1}p_{k}m_{k}, $$
(8)

where p k is the probability that in a metapopulation-dynamical resident equilibrium, a randomly chosen patch has k residents. Furthermore, the conditional production E k is the expected amount of successful mutant dispersers emigrated from a clan which initially consists of k−1 residents and a single mutant.

Consider a local population with exactly k individuals, of which at least one is a mutant. Suppose that a specific mutant in this local population is given the option to emigrate immediately. The direct difference in benefits and costs of a positive emigration decision is 1−E k : 1 for the emigrating mutant, and −E k for the loss of expected average disperser production of a clan founded by this individual at the decision moment. The indirect effect comes through possible relatives. The expected amount of relatives (i.e., mutants) present in the patch at the decision moment is ρ k k, of which 1 is the specific individual itself. The fitness difference for each relative is E k−1E k , because the population size in the patch after the emigration decision will be k−1 if the specific mutant emigrates and k if it does not. To summarize, the additional benefits of adult dispersal in a local population with size k compared with the nondispersing case are

$$ 1-E_{k}+(\rho_{k}k-1) (E_{k-1}-E_{k}). $$
(9)

Benefits in natal dispersal goes slightly differently. Consider again a mutant in a local population of k individuals, but now at the moment of birth of one offspring to the mutant. Now the parent (or the offspring) is given the choice of making the offspring to disperse or not. If the offspring disperses, the direct fitness benefits of the parent and offspring together are 1+E k , and the costs are 2E k+1. The indirect benefits to the possible relatives are E k E k+1 for each. In total, the additional benefits for a parent that sends its offspring to disperse, compared to parent that does not, are

$$ 1+E_{k}-2E_{k+1}+(\rho_{k}k-1) (E_{k}-E_{k+1}). $$
(10)

Because we assume clonal reproduction, there is no parent-offspring conflict here.

In principle, if these additional benefits are positive in a local population of size k, the fitness gradient for the emigration strategy component e k should be positive, and vice versa. However, the quantities (9) and (10) do not take into account how w n,n, the expected time that a mutant clan spends in a state with n residents and n′ mutants, will change when the strategy of the mutant changes. Thus, the quantities (9) and (10) are only indicative, but can to some extent explain observed dispersal behavior in the model. The complete calculation is taken into account in the actual calculation of the fitness gradient, derived by Parvinen (2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvinen, K., Seppänen, A. & Nagy, J.D. Evolution of Complex Density-Dependent Dispersal Strategies. Bull Math Biol 74, 2622–2649 (2012). https://doi.org/10.1007/s11538-012-9770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9770-9

Keywords

Navigation