Skip to main content
Log in

A Mathematical Model for Flight Guidance in Honeybee Swarms

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

When a colony of honeybees relocates to a new nest site, less than 5 % of the bees (the scout bees) know the location of the new nest. Nevertheless, the small minority of informed bees manages to provide guidance to the rest and the entire swarm is able to fly to the new nest intact. The streaker bee hypothesis, one of the several theories proposed to explain the guidance mechanism in bee swarms, seems to be supported by recent experimental observations. The theory suggests that the informed bees make high-speed flights through the swarm in the direction of the new nest, hence conspicuously pointing to the desired direction of travel. This work presents a mathematical model of flight guidance in bee swarms based on the streaker bee hypothesis. Numerical experiments, parameter studies, and comparison with experimental data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The swarm considered in this paper is horizontal, hence phrases such as “the highest and lowest locations” or “swarm height” refer to the horizontal y-variable, not to the vertical direction.

References

  • Avitabile, A., Morse, R. A., & Boch, R. (1975). Swarming honey bees guided by pheromones. Ann. Entomol. Soc. Am., 68, 1079–1082.

    Google Scholar 

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Interaction ruling animal collective behaviour depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci., 105, 1232–1237.

    Article  Google Scholar 

  • Beekman, M., Fathke, R. L., & Seeley, T. D. (2006). How does an informed minority of scouts guide a honeybee swarm as it flies to its new home? Anim. Behav., 71, 161–171.

    Article  Google Scholar 

  • Berthold, P., & Querner, U. (1981). Genetic basis of migratory behavior in European warblers. Science, 212, 77–79.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Princeton studies in complexity. Self-organization in biological systems. Princeton: Princeton University Press, reprint of the 2001 original.

    MATH  Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision making in animal groups on the move. Nature, 433, 513–516.

    Article  Google Scholar 

  • Cucker, F., & Smale, S. (2007). Emergent behavior in flocks. IEEE Trans. Autom. Control, 52(5), 852–862.

    Article  MathSciNet  Google Scholar 

  • Diwold, K., Schaerf, T. M., Myerscough, M. R., Middendorf, M., & Beekman, M. (2011). Deciding on the wing: in-flight decision making and search space sampling in the red dwarf honeybee apis florea. Swarm Intell., 5, 121–141.

    Article  Google Scholar 

  • Dodson, J. J. (1988). The nature and role of learning in the orientation and migratory behavior of fishes. Environ. Biol. Fisches, 23(3), 161–182.

    Article  MathSciNet  Google Scholar 

  • D’Orsogna, M. R., Chuang, Y.-L., Bertozzi, A. L., & Chayes, L. S. (2006). Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett., 96(10), 104302.

    Article  Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd. J. Theor. Biol., 31, 295–311.

    Article  Google Scholar 

  • Holm, D. D., & Putkaradze, V. (2005). Aggregation of finite-size particles with variable mobility. Phys. Rev. Lett., 95, 226106.

    Article  Google Scholar 

  • Janson, S., Middendorf, M., & Beekman, M. (2005). Honey bee swarms: how do scouts guide a swarm of uninformed bees? Anim. Behav., 70, 349–358.

    Article  Google Scholar 

  • Kolokolnikov, T., Sun, H., Uminsky, D., & Bertozzi, A. L. (2011). A theory of complex patterns arising from 2D particle interactions. Phys. Rev. E, 84, 015203(R).

    Article  Google Scholar 

  • Krause, J., & Ruxton, G. D. (2002). Living in groups. Oxford: Oxford University Press.

    Google Scholar 

  • Latty, T., Duncan, M., & Beekman, M. (2009). High bee traffic disrupts transfer of directional information in flying honey bee swarms. Anim. Behav., 78, 117–121.

    Article  Google Scholar 

  • Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proc. of the 40th IEEE conference on decision and control (pp. 2968–2973).

    Google Scholar 

  • Levine, H., Rappel, W.-J., & Cohen, I. (2000). Self-organization in systems of self-propelled particles. Phys. Rev. E, 63(1), 017101.

    Article  Google Scholar 

  • Lindauer, M. (1955). Schwarmbiene auf Wohnungssuche. Z. Vergl. Physiol., 37, 263–324.

    Article  Google Scholar 

  • Lukeman, R., Li, Y.-X., & Edelstein-Keshet, L. (2009). A conceptual model for milling formations in biological aggregates. Bull. Math. Biol., 71(2), 352–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Makinson, J., Oldroyd, B., Schaerf, T., Wattanachaiyingchareon, W., & Beekman, M. (2011). Moving home: nest-site selection in the Red Dwarf honeybee (Apis florea). Behav. Ecol. Sociobiol., 65(5), 945–958.

    Article  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., Bent, L., & Spiros, A. (2003). Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol., 47, 353–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Okubo, A., Grünbaum, D., & Edelstein-Keshet, L. (2001). The dynamics of animal grouping. In A. Okubo & S. Levin (Eds.), Diffusion and ecological problems: modern perspectives (pp. 197–237). New York: Springer.

    Google Scholar 

  • Pitcher, T., Magurran, A., & Winfield, I. (1982). Fish in larger shoals find food faster. Behav. Ecol. Sociobiol., 10, 149–151.

    Article  Google Scholar 

  • Schultz, K., Passino, K., & Seeley, T. (2008). The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? J. Exp. Biol., 211, 3287–3295.

    Article  Google Scholar 

  • Seeley, T. D. (2010). Honeybee democracy. Princeton: Princeton University Press.

    Google Scholar 

  • Seeley, T., Morse, R., & Visscher, P. (1979). The natural history of the flight of honey bee swarms. Psyche, 86, 103–113.

    Article  Google Scholar 

  • Seidl, R., & Kaiser, W. (1981). Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J. Comp. Physiol. A, 143, 17–26.

    Article  Google Scholar 

  • Stürzl, W., Boeddeker, N., Dittmar, L., & Egelhaaf, M. (2010). Mimicking honeybee eyes with a 280 field of view catadioptric imaging system. Bioinsp. Biomim., 5, 036002.

    Article  Google Scholar 

  • Winston, M. L. (1987). The biology of the honey bee. Cambridge: Harvard University Press.

    Google Scholar 

Download references

Acknowledgements

R.F. was supported by NSERC Discovery Grant PIN-341834. A.G. acknowledges NSERC support through the USRA program (Summer 2011). R.F. thanks his colleague John Stockie for pointing out to him a book by T. Seeley and the fascinating world of honeybees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Fetecau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetecau, R.C., Guo, A. A Mathematical Model for Flight Guidance in Honeybee Swarms. Bull Math Biol 74, 2600–2621 (2012). https://doi.org/10.1007/s11538-012-9769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9769-2

Keywords

Navigation