Skip to main content
Log in

The nature and role of learning in the orientation and migratory behavior of fishes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Fish migration may be viewed as the product of two processes; the selection and tracking of optimal environmental conditions through time and space, and the use of predictive information about environmental structure to bias movements towards a goal. The establishment and maintenance of directional bias is based on the interaction of experience and instinct. The preoccupation of much fish orientation research with innate fixed patterns of behavior on one hand and hydrodynamics on the other has led us to underestimate the possibility that orientation is a flexible process relying on developmental sequences, calibration of the motor-sensory interaction based on experience and the learning of environmental pattern. Evidence illustrating how experience and learning may influence the direction of movement and how the goal is recognized is presented according to two general categories: (a) imprinting and early experience and (b), spatial learning, including the social transmission of migratory routes and directions. In the first category, the olfactory hypothesis of salmon homing is briefly reviewed and new data presented describing olfactory imprinting in Atlantic salmon,Salmo salar. In the second category, evidence is presented demonstrating the modifiability of sun-compass orientation and the ability of some fish species to learn the spatial distribution of landmarks. The role of social transmission in the migration of coral reef fishes is reviewed. The possible role of these learning phenomena in the formation of familiar area maps, route-based and location-based navigation and the critical distance factor is considered. The relationship between life history and the nature of learning in migratory orientation is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Able, K.P. 1980. Mechanisms of orientation, navigation and homing. pp. 283–373. In: S.A. Gauthreaux, Jr. (ed.) Animal Migration, Orientation, and Navigation, Academic Press, New York.

    Google Scholar 

  • Able, K.P. & V.P. Bingham. 1987. The development of orientation and navigation behavior in birds. Quart. Rev. Biol. 62: 1–29.

    Article  Google Scholar 

  • Adler, H.E. 1970. Ontogeny and phylogeny of orientation. pp. 303–336. In: L.R. Aronson, E. Tobach, D.S. Lehrman & J.S. Rosenblatt (ed.) Development and Evolution of Behavior: Essays in Memory of T.C. Schneirla, W.H. Freeman, San Francisco.

    Google Scholar 

  • Adler, H.E., 1971. The development and evolution of orientation: panel discussion. Ann. N.Y. Acad. Sci. 188: 393–407.

    Google Scholar 

  • Arnold, G.P. 1981. Movements of fish in relation to water currents. pp. 55–79. In: D.J. Aidley (ed.) Animal Migration, Cambridge University Press, Cambridge.

    Google Scholar 

  • Arnold, G.P. & P.H. Cook. 1984. Fish migration by selective tidal stream transport: first results with a computer simulation model for the European continental shelf pp. 227–261. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Aronson, L.R. 1951. Orientation and jumping behavior in the gobiid fishBathygobius soporator. Amer. Mus. Novit. 1486: 1–22.

    Google Scholar 

  • Aronson, L.R. 1971. Further studies on orientation and jumping behavior in the gobiid fish,Bathygobius soporator. Ann. N.Y. Acad. Sci. 188: 378–392.

    CAS  Google Scholar 

  • Baker, R.R. 1978. The evolutionary ecology of animal migration. Hodder and Stoughton, London. 1012 pp.

    Google Scholar 

  • Baker, R.R. 1982. Migration, paths through time and space. Hodder and Stoughton, London. 248 pp.

    Google Scholar 

  • Balchen J.G.1976. Principles of migration in fishes. Foundation for Scientific and Industrial Research of the Norwegian Institute of Technology (SINTEF), Report STF48-A76045, Trondheim, Norway. 25 pp.

  • Balchen, J.G. 1979. Modeling, prediction, and control of fish behavior. pp. 99–146, In: C.T. Leondes (ed.) Control and Dynamic Systems, Vol. 15, Academic Press, New York.

    Google Scholar 

  • Barkley, R.A., W.H. Neill & R.M. Gooding. 1978. Skipjack tuna,Katsuwonus pelamis, habitat based on temperature and oxygen requirements. U.S. Fish. Bull. 76: 653–662.

    Google Scholar 

  • Bateson, P.P. 1981. Control of sensitivity to the environment during development. pp. 432–453. In: K. Immelmann, G.W. Barlow, L. Petrinovich & M. Main (ed.) Behavioral Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bernatchez, L. & J.J. Dodson. 1987. Relationship between bioenergetics and behavior in anadromous fish migrations. Can. J. Fish. Aquat. Sci. 44: 399–407.

    Google Scholar 

  • Bingham, W.E. & W.J. Griffiths, Jr. 1952. The effect of different environments during infancy on adult behavior in the rat. J. Comp. Physiol. Psychol. 45: 307–312.

    Article  CAS  Google Scholar 

  • Bitterman, M.E. 1984. Migration and learning in fishes. pp. 397–420. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Bovet, J. 1987. Cognitive map size and homing behavior. pp. 252–265. In: P. Ellen & C. Thinus-Blanc (ed.) Cognitive Processes and Spatial Orientation in Animal and Man, Vol. 1, Experimental Animal Psychology and Ethology, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Brannon, E.L. 1972. Mechanisms controlling migration of sockeye salmon fry. Int. Pac. Salm. Fish. Comm. Bull. 21: 1–86.

    Google Scholar 

  • Brannon, E.L., T.P. Quinn, G.L. Lucchetti & B.D. Ross. 1981. Compass orientation of sockeye salmon fry from a complex river system. Can. J. Zool. 59: 1548–1553.

    Article  Google Scholar 

  • Creutzberg, F. 1961. On the orientation of migrating elvers (Anguilla vulgaris Turt.) in a tidal area. Neth. J. Sea Res. 1: 257–338.

    Article  Google Scholar 

  • Del Russo, J.E. 1975. Observational learning of discriminative avoidance in hooded rats. Animal Learning & Behavior 3: 76–80.

    Google Scholar 

  • Dingle, H. 1980. Ecology and evolution of migration. pp. 1–101. In: S.A. Gauthreaux, Jr. (ed.) Animal Migration, Orientation, and Navigation, Academic Press, New York.

    Google Scholar 

  • Dodson, J.J. & L.A. Dohse. 1984. A model of olfactory-mediated conditioning of directional bias in fish migrating in reversing tidal currents based on the homing migration of American shad (Alosa sapidissima) pp. 263–281. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Dodson, J.J. & W.C. Leggett. 1974. Role of olfaction and vision in the behavior of American shad (Alosa sapidissima) homing to the Connecticut River from Long Island Sound. J. Fish. Res. Board Can. 31: 1607–1619.

    Google Scholar 

  • Ellen, P. 1987. Cognitive mechanisms in animal problem solving. pp. 20–35. In: P. Ellen & C. Thinus-Blanc (ed.) Cognitive Processes and Spatial Orientation in Animal and Man, Vol. 1, Experimental Animal Psychology and Ethology, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Gibson, R.N. 1984. Hydrostatic pressure and the rhythmic behavior of intertidal fishes. Trans. Amer. Fish. Soc. 113: 479–483.

    Article  Google Scholar 

  • Goff, G.P. & J.M. Green. 1978. Field studies of the sensory basis of homing and orientation to the home site inUlvaria subbifurcata (Pisces: Stichaeidae). Can. J. Zool. 56: 2220–2224.

    Google Scholar 

  • Goodey, W. & N.R. Liley. 1986. The influence of early experience on escape behavior in the guppy (Poecilia reticulata). Can. J. Zool. 64: 885–888.

    Article  Google Scholar 

  • Goodyear, C.P. 1973. Learned orientation in the predator avoidance behavior of mosquitofish,Gambusia afnis. Behavior 45: 191–224.

    CAS  Google Scholar 

  • Gould, J.L. & P. Marler. 1987. Learning by instinct. Sci. Amer. 256 (1): 74–85.

    Article  Google Scholar 

  • Greer Walker, M., F.R. Harden Jones & G.P. Arnold. 1978. Movements of plaice (Pleuronectes platessa L.) tracked in the open sea. J. Cons. int. Expl. Mer. 38: 72–100.

    Google Scholar 

  • Griffin, D.R. 1955. Bird navigation. pp: 154–197. In: A. Wolfson (ed.) Recent Studies in Avian Biology, University of Illinois Press, Urbana.

    Google Scholar 

  • Groot, C. 1965. On the orientation of young sockeye salmon (Oncorhynchus nerka) during their seaward migration out of lakes. Behav. Suppl. 14: 1–198.

    Google Scholar 

  • Hara, T.J., S. Macdonald, R.E. Evans, T. Marui & S. Arai. 1984. Morpholine, bile acids and skin mucus as possible chemical cues in salmonid homing: electropysiological re-evaluation. pp. 363–378. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Harden Jones, F.R. 1984. Could fish use inertial clues when on migration? pp. 67–78. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Hasler, A.D.1971. Orientation and fish migration. pp: 429–510. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, London.

    Google Scholar 

  • Hasler, A.D. & A.T. Scholz. 1983. Olfactory imprinting and homing in salmon. Springer-Verlag, Berlin. 134 pp.

    Google Scholar 

  • Hasler, A.D. & W.J. Wisby. 1951. Discrimination of stream odor by fishes and relation to parent stream theory. Amer. Nat. 85: 223–238.

    Article  CAS  Google Scholar 

  • Healey, M.C. 1967. Orientation of pink salmon (Oncorhynchus gorbuscha) during early marine migration from Bella Coola River system. J. Fish. Res. Board Can. 24: 2321–2338.

    Google Scholar 

  • Hebb, D.O. 1949. The organization of behavior. Wiley, New York. 335 pp.

    Google Scholar 

  • Helfman, G.S., J.L. Meyer & W.N. McFarland. 1982. The ontogeny of twilight migration patterns in grunts (Pisces: Haemulidae). Anim. Behav. 30: 317–326.

    Article  Google Scholar 

  • Helfman, G.S. & E.T. Schultz. 1984. Social transmission of behavioral traditions in a coral reef fish. Anim. Behav. 32: 379–384.

    Article  Google Scholar 

  • Immelmann, K. & S.J. Suomi. 1981. Sensitive phases in development. pp. 395–431. In: K. Immelmann, G.W. Barlow, L. Petrinovich & M. Main (ed.) Behavioral Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge.

    Google Scholar 

  • Johnston, T.D. 1982. Selective costs and benefits in the evolution of learning. pp. 65–106. In: J.S. Rosenblatt, R.A. Hinde, C. Beer & M.-C. Busnel (ed.) Advances in the Study of Behavior, Vol. 12, Academic Press, New York.

    Google Scholar 

  • Kleerekoper, H., A.M. Timms, G.F. Westlake, F.B. Davey, T. Marlar & V.M. Anderson. 1970. An analysis of locomotor behavior of goldfish (Carassius auratus). Anim. Behav. 18: 317–330.

    Article  CAS  Google Scholar 

  • Leggett, W.C. 1977. The ecology of fish migrations. Ann. Rev. Ecol. Syst. 8: 285–308.

    Article  Google Scholar 

  • Leggett, W.C. 1984. Fish migrations in coastal and estuarine environments: a call for new approaches to the study of an old problem. pp. 159–178. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Leggett, W.C. & R.R. Whitney. 1972. Water temperature and the migrations of American shad. U.S. Fish. Bull. 70: 659–670.

    Google Scholar 

  • Lynn, R. 1984. Measuring physical oceanographic features relevant to the migration of fishes. pp. 471–486. In: J.D. McCleave, G.P. Arnold. J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Mazur, J.E. 1986. Learning and behavior. Prentice-Hall, Englewood Cliffs. 387 pp.

    Google Scholar 

  • McCleave, J.D., F.R. Harden Jones, W.C. Leggett & T.G. Northcote. 1984. Fish migration studies: future directions. pp. 545–554. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • McCleave, J.D. & G.S. Wippelhauser. 1987. Behavioral aspects of selective tidal stream transport in juvenile American eels. American Fisheries Society Symposium 1: 138–150.

    Google Scholar 

  • Miller, J.M., L.B. Crowder & M.L. Moser. 1985. Migration and utilization of estuarine nurseries by juvenile fishes: an evolutionary perspective. In: M.A. Rankin (ed.) Migration: Mechanisms and Adaptive Significance. Contr. Mar. Sci. 27: 338–352.

  • Morin, P.-P., J.-L. Verrette, J.J. Dodson & F.Y. Doré. 1987. Computer-automated method to study cardiac conditioning to a chemical cue in young salmon. Physiol. Behav. 39: 657–664.

    Article  CAS  Google Scholar 

  • Morin, P.-P., J.J. Dodson & F.Y. Doré. 1988. Behavioral evidence of a sensitive period for olfactory imprinting in young Atlantic salmon,Salmo salar. Can. J. Fish. Aquat. Sci. (in press).

  • Mysak, L.A. 1986. El Nino, interannual variability and fisheries in the northeast Pacific Ocean. Can. J. Fish. Aquat. Sci. 43: 464–497.

    Article  Google Scholar 

  • Neill, W.H. 1979. Mechanisms of fish distribution in heterothermal environments. Amer. Zool. 19: 305–317.

    Google Scholar 

  • Neill, W.H. 1984. Behavioral enviroregulation's role in fish migration. pp. 61–66. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Neves, R.J. & L. Depres. 1979. The oceanic migration of American shad (Alosa sapidissima) along the Atlantic coast. U.S. Fish. Bull. 77: 199–212.

    Google Scholar 

  • Northcote, T.G. 1984. Mechanisms of fish migration in rivers. pp. 317–355. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Ogden, J.C. & T.P. Quinn. 1984. Migration on coral reef fishes: ecological significance and orientation mechanisms. pp. 293–308. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed.) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Olson, D.E., D.H. Schupp & V. Macins. 1978. A hypothesis of homing behavior of wall-eyes as related to observed patterns of passive and active movement. Amer. Fish. Soc. Spec. Publ. 11: 52–57.

    Google Scholar 

  • Priede, I.G. 1985. Metabolic scope in fishes. pp. 33–64. In: P. Tytler & P. Calow (ed.) Fish Energetic: New Persprctives, Croom-Helm, Kent.

    Google Scholar 

  • Priede, I.G. & F.G.T. Holliday. 1980. The use of a new tilting tunnel respirometer to investigate some aspects of metabolism and swimming activity of the plaice (Pleuronectes platessa L.). J. Exp. Biol. 85: 295–309.

    Google Scholar 

  • Quinn, T.P. 1980. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J. Comp. Physiol. 137: 243–248.

    Article  Google Scholar 

  • Quinn, T.P. 1984. Homing and straying in Pacific salmon. pp. 357–362. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

  • Quinn, T.P. 1985. Homing and the evolution of sockeye salmon (Oncorhynchus nerka). In: M.A. Rankin (ed.) Migration: Mechanisms and Adaptive Significance. Contr. Mar. Sci. 27: 353–366.

  • Quinn, T.P. & E.L. Brannon. 1982. The use of celestial and magnetic cues by orienting sockeye salmon smolts. J. Comp. Physiol. A 147: 547–552.

    Article  Google Scholar 

  • Quinn, T.P. & C. Groot. 1983. Orientation of chum salmon (Oncorhynchus keta) after internal and external magnetic field alteration. Can. J. Fish. Aquat. Sci. 40: 1598–1606.

    Google Scholar 

  • Quinn, T.P. & C. Groot. 1984. The effect of water flow on bimodal orientation of juvenile chum salmon,Oncorhynchus keta. Anim. Behav. 32: 628–629.

    Article  Google Scholar 

  • Quinn, T.P. & J.C. Ogden. 1984. Field evidence of compass orientation in migrating juvenile grunts (Haemulidae). J. Exp. Mar. Biol. Ecol. 81: 181–192.

    Article  Google Scholar 

  • Rijnsdorp, A.D., M. van Stralen & H.W. van der Veer. 1985. Selective tidal transport of North Sea plaice larvae (Pleuronectes platessa) in coastal nursery areas. Trans. Amer. Fish. Soc. 114: 461–470.

    Article  Google Scholar 

  • Roitblat, H.L., W. Tham & L. Golub. 1982. Performance ofBeta splendens in a radial arm maze. Anim. Learn. & Beh. 10: 108–114.

    Google Scholar 

  • Schöne, H. 1984. Spatial orientation. The spatial control of behavior in animals and man, Princeton University Press, Princeton. 347 pp.

    Google Scholar 

  • Schwassmann, H.O. & W. Braemer. 1961. The effect of experimentally changed photoperiod on the sun orientation rhythm of fish. Physiol. Zool. 34: 273–326.

    Google Scholar 

  • Simpson, K.S. 1979. Orientation differences between populations of juvenile sockeye salmon. Fish. Mar. Serv. Tech. Rep. 717. 114 pp.

  • Smith, R.J.F. 1985. The control of fish migration. Springer-Verlag, Berlin. 243 pp.

    Google Scholar 

  • Stabell, O.B. 1984. Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biol. Rev. 59: 333–388.

    CAS  Google Scholar 

  • Staddon, J.E.R. 1983. Adaptive behavior and learning. Cambridge University Press, Cambridge. 555 pp.

    Google Scholar 

  • Thinus-Blanc, C. 1987. The cognitive map concept and its consequences. pp. 1–19. In: P. Ellen & C. Thinus-Blanc (ed.) Cognitive Processes and Spatial Orientation in Animal and Man, Vol. 1, Experimental Animal Psychology and Ethology, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Thorpe, W.H. 1963. Learning and instinct in animals. Methuen, London. 558 pp.

    Google Scholar 

  • Tolman, E.C. 1932. Purposive behavior in animals and men. Irvington, New York. 463 pp.

    Google Scholar 

  • Veen, J.F. de, 1970. On the orientation of the plaice (Pleuronectes platessa L.) 1. Evidence for orientation factors derived from the ICES transplantation experiments in the years 1904–1909. J. Cons. int. Explor. Mer 33: 192–227.

    Google Scholar 

  • Veen, J.F. de, 1978. On selective tidal transport in the migration of North Sea plaice (Pleuronectes platessa) and other flatfish species. Neth. J. Sea Res. 12: 115–147.

    Article  Google Scholar 

  • Walker, M.M. 1984. Learned magnetic-field discrimination in yellowfin tunaThunnus albacares. J. Comp. Phys. A 155: 673–679.

    Article  Google Scholar 

  • Wallraff, H.G. 1978. Preferred compass directions in initial orientation of homing pigeons. pp. 171–183. In: K. Schmidt-Koenig & W.T. Keeton (ed.) Animal Migration, Navigation and Homing, Springer-Verlag. Berlin.

    Google Scholar 

  • Wallraff, H.G. 1986. Directional components derived from initial-orientation data on inexperienced homing pigeons. J. Comp. Physiol. A 159: 143–159.

    Article  CAS  Google Scholar 

  • Weihs, D. 1984. Bioenergetic considerations in fish migration. pp. 487–508. In: J.D. McCleave, G.P. Arnold, J.J. Dodson & W.H. Neill (ed) Mechanisms of Migration in Fishes, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodson, J.J. The nature and role of learning in the orientation and migratory behavior of fishes. Environ Biol Fish 23, 161–182 (1988). https://doi.org/10.1007/BF00004908

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004908

Key words

Navigation