Skip to main content
Log in

Analytical Optimal Controls for the State Constrained Addition and Removal of Cryoprotective Agents

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cryobiology is a field with enormous scientific, financial, and even cultural impact. Successful cryopreservation of cells and tissues depends on the equilibration of these materials with high concentrations of permeating chemicals (CPAs) such as glycerol or 1,2 propylene glycol. Because cells and tissues are exposed to highly anisosmotic conditions, the resulting gradients cause large volume fluctuations that have been shown to damage cells and tissues. On the other hand, there is evidence that toxicity to these high levels of chemicals is time dependent, and therefore it is ideal to minimize exposure time as well. Because solute and solvent flux is governed by a system of ordinary differential equations, CPA addition and removal from cells is an ideal context for the application of optimal control theory. Recently, we presented a mathematical synthesis of the optimal controls for the ODE system commonly used in cryobiology in the absence of state constraints and showed that controls defined by this synthesis were optimal. Here we define the appropriate model, analytically extend the previous theory to one encompassing state constraints, and as an example apply this to the critical and clinically important cell type of human oocytes, where current methodologies are either difficult to implement or have very limited success rates. We show that an enormous increase in equilibration efficiency can be achieved under the new protocols when compared to classic protocols, potentially allowing a greatly increased survival rate for human oocytes and pointing to a direction for the cryopreservation of many other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Part of this work appeared as part of a doctoral dissertation (Benson 2009).

References

  • American Association of Blood Banks (2002). Technical manual: 50th anniversary AABB edition 1953–2003. Tech. rep.

  • American Society for Reproductive Medicine (2003). Patient’s fact sheet: cancer and fertility preservation. Tech. rep.

  • American Society for Reproductive Medicine (2003). Patient’s fact sheet: challenges of parenting multiples. Tech. rep.

  • Benson, J. D. (2009). Mathematical problems from cryobiology. Ph.D. thesis, University of Missouri.

  • Benson, J. D., Chicone, C. C., & Critser, J. K. (2005). Exact solutions of a two parameter flux model and cryobiological applications. Cryobiology, 50(3), 308–316.

    Article  Google Scholar 

  • Benson, J. D., Chicone, C. C., & Critser, J. K. (2010). A general model for the dynamics of cell volume, global stability and optimal control. Journal of Mathematical Biology, 63(2), 339–359.

    Article  MathSciNet  Google Scholar 

  • Boltyanskii, V. G. (1966). Sufficient conditions for optimality and the justification of the dynamic programming method. SIAM Journal on Control, 4, 326–361.

    Article  MathSciNet  Google Scholar 

  • Chuenkhum, S., & Cui, Z. (2006). The parameter conversion from the Kedem–Katchalsky model into the two-parameter model. CryoLetters, 27(3), 185–199.

    Google Scholar 

  • Collins, J., Bustillo, M., Visscher, R., & Lawrence, L. (1995). An estimate of the cost of in vitro fertilization services in the United States in 1995. Fertility and Sterility, 64(3), 538–545.

    Google Scholar 

  • Ding, W., Yu, J., Woods, E., Heimfeld, S., & Gao, D. (2007). Simulation of removing permeable cryoprotective agents from cryopreserved blood with hollow fiber modules. Journal of Membrane Science, 288(1–2), 85–93.

    Article  Google Scholar 

  • Elliott, J. A. W., Prickett, R., Elmoazzen, H., Porter, K., & McGann, L. (2007). A multisolute osmotic virial equation for solutions of interest in biology. Journal of Physical Chemistry B, 111(7), 1775–1785.

    Article  Google Scholar 

  • Gao, D., Benson, C., Liu, C., McGrath, J., Critser, E., & Critser, J. (1996). Development of a novel microperfusion chamber for determination of cell membrane transport properties. Biophysical Journal, 71(1), 443–450.

    Article  Google Scholar 

  • Gao, D. Y., Liu, J., Liu, C., McGann, L. E., Watson, P. F., Kleinhans, F. W., Mazur, P., Critser, E. S., & Critser, J. K. (1995). Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Human Reproduction, 10(5), 1109–1122.

    Google Scholar 

  • Garceau, L., Henderson, J., Davis, L., Petrou, S., Henderson, L., McVeigh, E., Barlow, D., & Davidson, L. (2002). Economic implications of assisted reproductive techniques: a systematic review. Human Reproduction, 17(12), 3090–3109.

    Article  Google Scholar 

  • Gilmore, J., Liu, J., Gao, D., & Critser, J. (1997). Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Human Reproduction, 12, 112–118.

    Article  Google Scholar 

  • Hernández, J. A. (2007). A general model for the dynamics of the cell volume. Bulletin of Mathematical Biology, 69(5), 1631–1648.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs, M. (1932). The simultaneous measurement of cell permeability to water and to dissolved substances. Journal of Cellular and Comparative Physiology, 2, 427–444.

    Article  Google Scholar 

  • Karlsson, J. O., & Toner, M. (1996). Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 17(3), 243–256.

    Article  Google Scholar 

  • Kashuba Benson, C. M., Benson, J. D., & Critser, J. K. (2008). An improved cryopreservation method for a mouse embryonic stem cell line. Cryobiology, 56, 120–130.

    Article  Google Scholar 

  • Katkov, I. (2000). A two-parameter model of cell membrane permeability for multisolute systems. Cryobiology, 40(1), 64–83.

    Article  Google Scholar 

  • Kleinhans, F. (1998). Membrane permeability modeling: Kedem–Katchalsky vs a two-parameter formalism. Cryobiology, 37(4), 271–289.

    Article  Google Scholar 

  • Kuleshova, L., & Lopata, A. (2002). Vitrification can be more favorable than slow cooling. Fertility and Sterility, 78(3), 449–454.

    Article  Google Scholar 

  • Levin, R., & Miller, T. (1981). An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology, 18(1), 32–48.

    Article  Google Scholar 

  • Levin, R. L. (1982). A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants. Journal of Biomechanical Engineering, 104(2), 81–86.

    Article  Google Scholar 

  • Luyet, B., & Gehenio, M. (1940). Life and death at low temperatures. Biodynamica.

  • Mazur, P. (2004). Principles of cryobiology. In B. Fuller, N. Lane, & E. Benson (Eds.), Life in the frozen state (pp. 3–65). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Mullen, S. F., Li, M., Li, Y., Chen, Z. J., & Critser, J. K. (2008). Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification. Fertility and Sterility, 89(6), 1812–1825.

    Article  Google Scholar 

  • O’Neil, L., Paynter, S., Fuller, B., Shaw, R., & DeVries, A. (1998). Vitrification of mature mouse oocytes in a 6 M Me2SO solution supplemented with antifreeze glycoproteins: the effect of temperature. Cryobiology, 37(1), 59–66.

    Article  Google Scholar 

  • Paynter, S. J., O’Neil, L., Fuller, B. J., & Shaw, R. W. (2001). Membrane permeability of human oocytes in the presence of the cryoprotectant propane-1,2-diol. Fertility and Sterility, 75(3), 532–538.

    Article  Google Scholar 

  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. New York: Pergamon Press.

    MATH  Google Scholar 

  • Woods, E., Benson, J., Agca, Y., & Critser, J. (2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology, 48(2), 146–156.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the University of Missouri, NSF grant NSF/DMS-0604331 (C. Chicone PI), NIH grants U42 RR14821 and 1RL 1HD058293 (J.K. Critser PI), and the National Institute of Standards and Technology National Research Council postdoctoral associateship (J.D. Benson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Benson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 276 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, J.D., Chicone, C.C. & Critser, J.K. Analytical Optimal Controls for the State Constrained Addition and Removal of Cryoprotective Agents. Bull Math Biol 74, 1516–1530 (2012). https://doi.org/10.1007/s11538-012-9724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9724-2

Keywords

Navigation