Skip to main content
Log in

Age or Stage Structure?

A Comparison of Dynamic Outcomes from Discrete Age- and Stage-Structured Population Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Discrete stage-structured density-dependent and discrete age-structured density-dependent population models are considered. Regarding the former, we prove that the model at hand is permanent (i.e., that the population will neither go extinct nor exhibit explosive oscillations) and given density dependent fecundity terms we also show that species with delayed semelparous life histories tend to be more stable than species which possess precocious semelparous life histories. Moreover, our findings together with results obtained from other stage-structured models seem to illustrate a fairly general ecological principle, namely that iteroparous species are more stable than semelparous species. Our analysis of various age-structured models does not necessarily support the conclusions above. In fact, species with precocious life histories now appear to possess better stability properties than species with delayed life histories, especially in the iteroparous case. We also show that there are dynamical outcomes from semelparous age-structured models which we are not able to capture in corresponding stage-structured cases. Finally, both age- and stage-structured population models may generate periodic dynamics of low period (either exact or approximate). The important prerequisite is to assume density-dependent survival probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Behncke, H. (2000). Periodical cicadas. J. Math. Biol., 40, 413–431.

    Article  MathSciNet  MATH  Google Scholar 

  • Bergh, M. O., & Getz, W. M. (1988). Stability of discrete age-structured and aggregated delay-difference population models. J. Math. Biol., 26, 551–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Botsford, L. W. (1986). Population dynamics of the Dungeness crab (Cancer magister). Can. Spec. Publ. Fish. Aquat. Sci., 92, 140–153.

    Google Scholar 

  • Botsford, L. W. (1992). Further analysis of Clark’s delayed recruitment model. Bull. Math. Biol., 54, 275–293.

    Google Scholar 

  • Bulmer, M. G. (1977). Periodical insects. Am. Nat., 111, 1099–1117.

    Article  Google Scholar 

  • Caswell, H. (2001). Matrix population models. Sunderland: Sinauer Ass. Inc. Publishers.

    Google Scholar 

  • Clark, C. W. (1976). A delayed recruitment model of population dynamics with an application to baleen whale population. J. Math. Biol., 3, 381–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke, D., & Leon, J. A. (1976). Stability of population growth determined by 2×2 Leslie matrix with density dependent elements. Biometrics, 32, 435–442.

    Article  MathSciNet  MATH  Google Scholar 

  • Costantino, R. F., Desharnais, R. A., Cushing, J. M., & Dennis, B. (1997). Chaotic dynamics in an insect population. Science, 275, 389–391.

    Article  MATH  Google Scholar 

  • Cushing, J. M. (1998). An introduction to structured population dynamics. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Cushing, J. M., Dennis, B., Desharnais, R. A., & Costantino, R. F. (1996). An interdisciplinary approach to understanding nonlinear ecological dynamics. Ecol. Model., 92, 111–119.

    Article  Google Scholar 

  • Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A., & Henson, S. M. (1998). Nonlinear population dynamics: models, experiments and data. J. Theor. Biol., 194, 1–9.

    Article  Google Scholar 

  • Davydova, N. V., Diekman, O., & van Gils, S. A. (2003). Year class coexistence or competitive exclusion for strict biennials? J. Math. Biol., 46, 95–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Dennis, B., Desharnais, R. A., Cushing, J. M., & Costantino, R. F. (1997). Transition in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol., 6b, 704–729.

    Article  Google Scholar 

  • Desharnais, R. A., & Liu, L. (1987). Stable demographic limit cycles in laboratory populations of Tribolium Castaneum. J. Anim. Ecol., 56, 885–906.

    Article  Google Scholar 

  • Elliott, J. M. (1994). Quantitative ecology and the Brown Trout. Oxford: Oxford University Press.

    Google Scholar 

  • Fowler, C. W. (1980). Comparative population dynamics in large mammals. In Fowler, C. W. & Smith, T. D. (Eds.) Dynamics of large mammal populations. New York: Wiley

    Google Scholar 

  • Govaerts, W., & Ghaziani, K. (2006). Numerical bifurcation analysis of a nonlinear stage structured cannibalism population model. J. Differ. Equ. Appl. 12, 1069–1085.

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J., Oster, G., & Ipaktchi, A. (1977). The dynamics of density dependent population models. J. Math. Biol., 4, 101–147.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1984). Age dependent predation is not a simple process. II. Wolves, ungulates and a discrete time model for predation on juveniles with a stabilizing tail. Theor. Popul. Biol., 26, 271–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Higgins, K., Hastings, A., & Botsford, L. W. (1997). Density dependence and age structure: nonlinear dynamics and population behavior. Am. Nat., 149, 247–269.

    Article  Google Scholar 

  • International Whaling Commission (1979). Report no. 29, International Whaling Commission.

  • Kon, R. (2005). Nonexistence of synchronous orbits and class coexistence in matrix population models. SIAM J. Appl. Math., 66(2), 616–626.

    Article  MathSciNet  MATH  Google Scholar 

  • Kon, R., Saito, Y., & Takeuchi, T. (2004). Permanence of single-species stage-structured models. J. Math. Biol., 48, 515–528.

    Article  MathSciNet  MATH  Google Scholar 

  • Kot, M. (2001). Elements of mathematical ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Levin, S. A., & Goodyear, P. H. (1980). Analysis of an age-structured fishery model. J. Math. Biol., 9, 245–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Longstaff, B. C. (1977). The dynamics of collembolan populations: a matrix model of single species population growth. Can. J. Zool., 55, 314–324.

    Article  Google Scholar 

  • Mjølhus, E., Wikan, A., & Solberg, T. (2005). On synchronization in semelparous populations. J. Math. Biol., 50, 1–21.

    Article  MathSciNet  Google Scholar 

  • Murray, J. D. (1993). Mathematical biology (2nd edn.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Neubert, M. G., & Caswell, H. (2000). Density-dependent vital rates and their population dynamic consequences. J. Math. Biol., 41, 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Ricker, W. E. (1954). Stock and recruitment. J. Fish. Res. Board Can., 11, 559–623.

    Article  Google Scholar 

  • Silva, J. A., & Hallam, T. G. (1993). Effects of delay, truncation and density dependence in reproduction schedules on stability of nonlinear Leslie matrix models. J. Math. Biol., 31, 367–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Solberg, T. (1998). Rare phenomena in an age-structured population model. Master thesis, University of Tromsø, Norway.

  • Stenseth, N. C., & Ims, R. A. (1993). Population dynamics of lemmings: temporal and spatial variation. In N. C. Stenseth & R. A. Ims (Eds.), The biology of lemmings. London: Academic Press.

    Google Scholar 

  • Thunberg, H. (2001). Periodicity versus chaos in one-dimensional dynamics. SIAM Rev., 43, 3–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuljapurkar, S., Boe, C., & Wachter, K. W. (1994). Nonlinear feedback dynamics in fisheries: analysis of the Deriso–Schnute model. Can. J. Fish. Aquat. Sci., 51, 1462–1473.

    Article  Google Scholar 

  • Wikan, A. (1997). Dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities. Math. Biosci., 146, 37–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Wikan, A., & Eide, A. (2004). An analysis of a nonlinear stage-structured cannibalism model with application to the northeast Arctic cod stock. Bull. Math. Biol., 66, 1685–1704.

    Article  MathSciNet  Google Scholar 

  • Wikan, A., & Mjølhus, E. (1995). Periodicity of 4 in age-structured population models with density dependence. J. Theor. Biol., 173, 109–119.

    Article  Google Scholar 

  • Wikan, A., & Mjølhus, E. (1996). Overcompensatory recruitment and generation delay in discrete age-structured population models. J. Math. Biol., 35, 195–239.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arild Wikan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wikan, A. Age or Stage Structure?. Bull Math Biol 74, 1354–1378 (2012). https://doi.org/10.1007/s11538-012-9715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9715-3

Keywords

Navigation