Skip to main content
Log in

On the Stock Estimation for a Harvested Fish Population

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a stage-structured model of a harvested fish population and we are interested in the problem of estimating the unknown stock state for each class. The model used in this work to describe the dynamical evolution of the population is a discrete time system including a nonlinear recruitment relationship. To estimate the stock state, we build an observer for the considered fish model. This observer is an auxiliary dynamical system that uses the catch data over each time interval and gives a dynamical estimate of the stock state for each stage class. The observer works well even if the recruitment function in the considered model is not well known. The same problem for an age-structured model has been addressed in a previous work (Ngom et al., Math. Biosci. Eng. 5(2):337–354, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertos, P. (1990). Block multirate Input–Output model for sampled-Data control systems. IEEE Trans. Autom. Control, 35, 1085–1088.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1979). Optimal filering. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1981). Detectability and stabilizability of time-varying discrete-time linear systems. SIAM J. Control Optim., 19(1), 20–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Anon (2001). Advisory Committee on Fisheries Management (ACFM): Report of the Arctic Fisheries Working Group. ICES CM 2001/ACFM:19.

  • Baras, J. S., Bensoussan, A., & James, M. R. (1988). Dynamic observers as asymptotic limits of recursive filters: special cases. SIAM J. Appl. Math., 48(5), 1147–1158.

    Article  MathSciNet  MATH  Google Scholar 

  • Beverton, R. J. H., & Holt, S. J. (1957). On the dynamics of exploited fish populations. London: Chapman & Hall.

    Google Scholar 

  • Bhattacharyya, S. P. (1978). Observer design for linear system with unknown inputs. IEEE Trans. Autom. Control, 23, 483–484.

    Article  MATH  Google Scholar 

  • Boutayeb, M., & Darouach, M. (2000). Observers design for linear time-varying systems. In 39th IEEE CDC (pp. 3183–3187).

    Google Scholar 

  • Corliss, G. F. (1989). Survey of interval algorithms for ordinary differential equations. Appl. Math. Comput., 31, 112–120.

    Article  MathSciNet  Google Scholar 

  • Darouach, M., Zasadzinski, M., & Xu, S. J. (1994). Full-order observer for linear systems with unknown inputs. IEEE Trans. Autom. Control, 39(3), 606–609.

    Article  MathSciNet  MATH  Google Scholar 

  • FAO (1987). Rapport du deuxième groupe de travail AD HOC sur les Chinchards et les Maquereaux de la zone nord du COPACE. Organisation des Nations Unies pour l’Alimentation et l’Agriculture, Rome. http://www.fao.org/DOCREP/003/S4882F/S4882F09.htm.

  • Getz, W. M., & Haight, R. G. (1989). Monographs in population biology: Vol. 27. Population harvesting. Demographic models of fish, forest, and animal resources. Princeton: Princeton University Press.

    Google Scholar 

  • Hou, M., & Muller, P. C. (1994). Disturbance decoupled observer design: a unified viewpoint. IEEE Trans. Autom. Control, 39(6), 1338–1341.

    Article  MathSciNet  MATH  Google Scholar 

  • Hou, M., & Muller, P. C. (1992). Design of observers for linear systems with unknown inputs. IEEE Trans. Autom. Control, 37, 872–875.

    Article  MathSciNet  Google Scholar 

  • Hostetter, G., & Meditch, J. (1973). Observing systems with unmeasurable inputs. IEEE Trans. Autom. Control, 18, 307–308.

    Article  Google Scholar 

  • Iggidr, A. (2004). Controllability, observability and stability of mathematical models. In J. A. Filar (Ed.), Mathematical models. Encyclopedia of life support systems (EOLSS). Oxford: Eolss Publishers. Developed under the auspices of the UNESCO, http://www.eolss.net.

    Google Scholar 

  • Jaulin, L., Braems, I., Kieffer, M., & Walter, E. (2001). Guaranteed nonlinear estimation using constraint propagation on sets. Int. J. Control, 74(18), 1772–1782.

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, J., Tank, M. J., & Park, C. (1997). Time-delayed state and unknown input observation. Int. J. Control, 66(5), 733–745.

    Article  MATH  Google Scholar 

  • Johnson, C. (1975). An observers for systems with unknown and inaccessible inputs. IEEE Trans. Autom. Control, 21, 825–831.

    MATH  Google Scholar 

  • Kamen, E. W. (1993). Block form observers for linear time-varying discrete-time systems. In Proc. IEEE conference on decision and control, San Antonio, USA (pp. 355–356).

    Google Scholar 

  • Kamen, E. W. (1992). Study of linear time-varying discrete-time systems in terms of time-compressed models. In Proc. IEEE conference on decision and control, USA (pp. 3070–3075).

    Google Scholar 

  • Kurzhanski, A., & Valyi, I. (1997). Ellipsoidal calculus for estimation and control. Boston: Birkhauser.

    MATH  Google Scholar 

  • Luenberger, D. G. (1971). An introduction to observers. IEEE Trans. Autom. Control, AC-16(6), 596–602.

    Article  MathSciNet  Google Scholar 

  • Magal, P., & Pelletier, D. (1997). A fixed point theorem with application to a model of population dynamics. J. Differ. Equ. Appl., 3(1), 65–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, J. B., & Anderson, B. D. O. (1980). Coping with singular transition matrices in estimation and control stability theory. Int. J. Control, 31, 571–586.

    Article  MathSciNet  MATH  Google Scholar 

  • Ngom, D., Iggidr, A., Guiro, A., & Ouahbi, A. (2008). An observer for a nonlinear age-structured model of a harvested fish population. Math. Biosci. Eng., 5(2), 337–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Nikoukhah, R., Campbell, S. L., & Delebecque, F. (1998). Observer design for general linear time-invariant systems. Automatica, 34(3), 575–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Rapaport, A., & Gouzé, J. L. (2003). Parallelotopic and practical observers for non-linear uncertain systems. Int. J. Control, 76(3), 237–251.

    Article  MATH  Google Scholar 

  • Rihm, R. (1994). Interval methods for initial value problems in ODEs. In Topics in validated computations. Amsterdam: Elsevier (pp. 173–208).

    Google Scholar 

  • Ricker, W. E. (1954). Stock and recruitment. J. Fish. Res. Board Can., 11, 559–623.

    Article  Google Scholar 

  • Shepherd, J. G. (1982). A family of general production curves for exploited populations. Math. Biosci., 59, 77–93.

    Article  MathSciNet  Google Scholar 

  • Sheweppe, F. C. (1968). Recursive state estimation: unknown but bounded errors and systems inputs. IEEE Trans. Autom. Control, 13(1), 22–28.

    Article  Google Scholar 

  • Sundaram, S., & Hadjicostis, C. N. (2007). Delays observers for linear systems with unknown inputs. IEEE Trans. Autom. Control, 52, 334–339.

    Article  MathSciNet  Google Scholar 

  • Sontag, E. D. (1998). Texts in applied mathematics: Vol. 6. Mathematical control theory. Deterministic finite-dimensional systems. New York: Springer.

    MATH  Google Scholar 

  • Valcher, M. E. (1999). State observers for discrete-time linear systems with unknown inputs. IEEE Trans. Autom. Control, 44(2), 397–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Wikan, A., & Eide, A. (2004). An analysis of a nonlinear stage-structured cannibalism model with application to the northeast arctic cod stock. Bull. Math. Biol., 66, 1685–1704.

    Article  MathSciNet  Google Scholar 

  • Yang, F., & Wilde, R. W. (1975). Observers for linear systems with unknown inputs. IEEE Trans. Autom. Control, 20, 716–717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diène Ngom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiro, A., Iggidr, A. & Ngom, D. On the Stock Estimation for a Harvested Fish Population. Bull Math Biol 74, 116–142 (2012). https://doi.org/10.1007/s11538-011-9667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9667-z

Keywords

Navigation