Skip to main content
Log in

Evolutionary Convergence to Ideal Free Dispersal Strategies and Coexistence

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a two species competition model in which the species have the same population dynamics but different dispersal strategies and show how these dispersal strategies evolve. We introduce a general dispersal strategy which can result in the ideal free distributions of both competing species at equilibrium and generalize the result of Averill et al. (2011). We further investigate the convergent stability of this ideal free dispersal strategy by varying random dispersal rates, advection rates, or both of these two parameters simultaneously. For monotone resource functions, our analysis reveals that among two similar dispersal strategies, selection generally prefers the strategy which is closer to the ideal free dispersal strategy. For nonmonotone resource functions, our findings suggest that there may exist some dispersal strategies which are not ideal free, but could be locally evolutionarily stable and/or convergent stable, and allow for the coexistence of more than one species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, M. S., & Sibert, J. R. (2002). Population dynamics and movements of skipjack tuna (Katsuwonus pelamis) in the Maldivian fisher: analysis of tagging data from an advection-diffusion–reaction model. Aquatic Living Resour., 15, 13–23.

    Article  Google Scholar 

  • Averill, I., Lou, Y., & Munther, D. (2011). On several conjectures from evolution of dispersal. J. Biol. Dyn., in press.

  • Belgacem, F. (1997) Pitman Res. Notes Math. Ser.: Vol. 368. Elliptic boundary value problems with indefinite weights: variational formulations of the principal eigenvalue and applications. Harlow: Longman.

    MATH  Google Scholar 

  • Belgacem, F., & Cosner, C. (1995). The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment. Can. Appl. Math. Q., 3, 379–397.

    MathSciNet  MATH  Google Scholar 

  • Berthold, P., & Pulido, F. (1994). Heritability of migratory activity in a natural bird population. Proc. Biol. Sci., 257(1350), 311–315.

    Article  Google Scholar 

  • Berthold, P., & Querner, U. (1981). Genetic basis of migratory behavior in European warblers. Science, 212(4490), 77–79.

    Article  Google Scholar 

  • Bowler, D. E., & Benten, T. G. (2005). Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biol. Rev., 80, 205–225.

    Article  Google Scholar 

  • Cantrell, R. S., Cosner, C., DeAngelis, D. L., & Padrón, V. (2007). The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn., 1, 249–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2006). Movement towards better environments and the evolution of rapid diffusion. Math. Biosci., 204, 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2007). Advection mediated coexistence of competing species. Proc. R. Soc. Edinb. A, 137A, 497–518.

    MathSciNet  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2010). Evolution of dispersal and ideal free distribution. Math. Biosci. Eng., 7, 17–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X. F., & Lou, Y. (2008). Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J., 57, 627–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X. F., Hambrock, R., & Lou, Y. (2008). Evolution of conditional dispersal: a reaction–diffusion-advection model. J. Math. Biol., 57, 361–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Clobert, J., Danchin, E., Dhondt, A. A., & Nichols, J. D. (Eds.) (2001). Dispersal. Oxford: Oxford University Press.

    Google Scholar 

  • Cosner, C., & Lou, Y. (2003). Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 277, 489–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Dancer, E. N. (1995). Positivity of maps and applications. In M. Matzeu & A. Vignoli (Eds.), Prog. nonlinear differential equations appl.: Vol. 15. Topological nonlinear analysis (pp. 303–340). Boston: Birkhauser.

    Chapter  Google Scholar 

  • Dieckmann, U. (1997). Can adaptive dynamics invade? Trends Ecol. Evol., 12, 128–131.

    Article  Google Scholar 

  • Dieckmann, U., O’Hara, B., & Weisser, W. (1999). The evolutionary ecology of dispersal. Trends Ecol. Evol., 14, 88–90.

    Article  Google Scholar 

  • Diekmann, O. (2003). A beginner’s guide to adaptive dynamics. Banach Cent. Publ., 63, 47–86.

    Article  MathSciNet  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., & Pernarowski, M. (1998). The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol., 37, 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741.

    Article  Google Scholar 

  • Fretwell, S. D., & Lucas, H. L. Jr. (1970). On territorial behavior and other factors influencing habitat selection in birds, Theoretical development. Acta Biotheor., 19, 16–36.

    Article  Google Scholar 

  • Gassmann, A. J., Onstad, D. W., & Pittendrigh, B. R. (2009). Evolutionary analysis of herbivorous insects in natural and agricultural environments. Pest Manag. Sci., 65, 1174–1181.

    Article  Google Scholar 

  • Geritz, S. A. H., Kisdi, E., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Geritz, S. A. H., Jacobs, F. J. A., Meszéna, G., Metz, J. A. J., & van Heerwaarden, J. S. (1996). Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and Spatial Structures of Dynamical Systems (pp. 183–231).

    Google Scholar 

  • Gilbarg, D., & Trudinger, N. (1983). Elliptic partial differential equation of second order (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Hambrock, R., & Lou, Y. (2009). The evolution of conditional dispersal strategy in spatially heterogeneous habitats. Bull. Math. Biol., 71, 1793–1817.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 24, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D. (1981). Lecture notes in math.: Vol. 840. Geometric theory of semilinear parabolic equations. Berlin: Springer.

    MATH  Google Scholar 

  • Hess, P. (1991). Pitman res. notes math. ser.: Vol. 247. Periodic-parabolic boundary value problems and positivity. Harlow: Longman.

    MATH  Google Scholar 

  • Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol., 28, 181–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Holt, R. D., & McPeek, M. A. (1996). Chaotic population dynamics favors the evolution of dispersal. Am. Nat., 148, 709–718.

    Article  Google Scholar 

  • Hsu, S., Smith, H., & Waltman, P. (1996). Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc., 348, 4083–4094.

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson, V., Mischaikow, K., & Poláčik, P. (2001). The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol., 43, 501–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, M. L., & Gaines, M. S. (1990). Evolution of dispersal: Theoretical models and empirical tests using birds and mammals. Ann. Rev. Ecolog. Syst., 21, 449–480.

    Article  Google Scholar 

  • Kirkland, S., Li, C.-K., & Schreiber, S. J. (2006). On the evolution of dispersal in patchy environments. SIAM J. Appl. Math., 66, 1366–1382.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, K. Y. (2011). Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J. Differ. Equ., 250, 161–181.

    Article  MATH  Google Scholar 

  • Lam, K. Y. Limiting profiles of semilinear elliptic equations with large advection in population dynamics II, preprint.

  • Lam, K. Y., & Ni, W. M. (2010). Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Contin. Dyn. Syst., Ser. A, 28, 1051–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, S. A., Cohen, D., & Hastings, A. (1984). Dispersal strategies in patchy environments. Theor. Popul. Biol., 26, 165–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, S. A., Muller-Landau, H. C., Nathan, R., & Chave, J. (2003). The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst., 34, 575–604.

    Article  Google Scholar 

  • Matano, H. (1984). Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems. J. Fac. Sci. Univ. Tokyo, 30, 645–673.

    MathSciNet  MATH  Google Scholar 

  • McPeek, M. A., & Holt, R. D. (1992). The evolution of dispersal in spatially and temporally varying environments. Am. Nat., 140, 1010–1027.

    Article  Google Scholar 

  • Meinke, L. J., Sappington, T. W., Onstad, D. W., Guillemaud, T., Miller, N. J., Komáromi, J., Levay, N., Furlan, L., Kiss, J., & Toth, F. (2009). Western corn rootworm (diabrotica virgifera leconte) population dynamics. Agric. For. Entomol., 11, 29–46.

    Article  Google Scholar 

  • Padrón, V., & Trevisan, M. C. (2006). Environmentally induced dispersal under heterogeneous logistic growth. Math. Biosci., 199, 160–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Pao, C. V. (1992). Nonlinear parabolic and elliptic equations. New York: Plenum.

    MATH  Google Scholar 

  • Protter, M. H., & Weinberger, H. F. (1984). Maximum principles in differential equations (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Sibert, J. R., Hampton, J., Fournier, D. A., & Bills, P. J. (1999). An advection-diffusion–reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (katsuwonus pelamis). Can. J. Fish. Aquat. Sci., 56, 925–938.

    Google Scholar 

  • Skeel, R. D., & Berzins, M. (1990). A method of spatial discretization of parabolic equations in one space variable. SIAM J. Sci. Stat. Comput., 11(1), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H. (1995). Mathematical surveys and monographs: Vol. 41. Monotone dynamical systems. Providence: Am. Math. Soc.

    MATH  Google Scholar 

  • Turchin, P. (1998). Qualitative analysis of movement. Sunderland: Sinauer Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Munther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gejji, R., Lou, Y., Munther, D. et al. Evolutionary Convergence to Ideal Free Dispersal Strategies and Coexistence. Bull Math Biol 74, 257–299 (2012). https://doi.org/10.1007/s11538-011-9662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9662-4

Keywords

Navigation