Skip to main content
Log in

Topological Analysis of Enzymatic Actions on DNA Polyhedral Links

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Current synthetic biology has witnessed a revolution that natural DNA molecule steps onto a broad scientific area by assembling a large variety of three-dimensional structures with the connectivity of polyhedra. A mathematical model of these biomolecules is crucial to clarify the biological self-assembly principle, and unravel a first-step understanding of biological regulation and controlling mechanisms. In this paper, mechanisms of two different enzymatic actions on DNA polyhedra are elucidated through theoretical models of polyhedral links: (1) topoisomerase that untangles DNA polyhedral links produces separated single-stranded DNA circles through the crossing change operation; (2) recombinase generates a class of polyhedral circular paths or polyhedral knots by applying the crossing smoothing operation. Furthermore, we also discuss the possibility of applying two theoretical operations in molecular design of DNA polyhedra. Thus, our research provides a new sight of how geometry and topology of DNA polyhedra can be manipulated and controlled by enzymes, as well as has implications for molecular design and structural analysis of structural genome organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. C. (1994). The knot book: an elementary introduction to the mathematical theory of knots. New York: Freeman.

    MATH  Google Scholar 

  • Aldaye, F. A., Palmer, A. L., & Sleiman, H. F. (2008). Assembling materials with DNA as the guide. Science, 321, 1795–1799.

    Article  Google Scholar 

  • Andersen, F. F. et al. (2008). Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res., 36, 1113–1119.

    Article  Google Scholar 

  • Angeleska, A., Jonoska, N., & Saito, M. (2009). DNA recombination through assembly graphs. Discrete Appl. Math., 157, 3020–3037.

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, A. D., & Maxwell, A. (2005). DNA topology (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Benham, C. J. et al. (2009). The IMA volumes in mathematics and its applications: Vol. 150. The mathematics of DNA structure, mechanics, and dynamics. New York: Springer.

    Google Scholar 

  • Bhatia, D. et al. (2009). Icosahedral DNA nanocapsules by modular assembly. Angew. Chem., Int. Ed. Engl., 48, 1–5.

    Article  Google Scholar 

  • Buck, D., & Marcotte, C. V. (2005). Tangle solutions for a family of DNA-rearranging proteins. Math. Proc. Camb. Philos. Soc., 139, 59–80.

    Article  MATH  Google Scholar 

  • Buck, D., & Flapan, E. (2007a). Predicting knot or catenane type of site-specific recombination products. J. Mol. Biol., 374, 1186–1199.

    Article  Google Scholar 

  • Buck, D., & Flapan, E. (2007b). A topological characterization of knots and links arising from site-specific recombination. J. Phys. A, Math. Theor., 40, 12377–12395.

    Article  MathSciNet  MATH  Google Scholar 

  • Buck, D., & Flapan, E. (2009). In Proceedings of symposia in applied mathematics: Vol. 66. Applications of knot theory. Providence: AMS.

    Google Scholar 

  • Buck, D., & Marcotte, C. V. (2007). Classification of tangle solutions for integrases, a protein family that changes DNA topology. J. Knot Theory Ramif., 16, 969–995.

    Article  MATH  Google Scholar 

  • Cerf, C. (1997). Nullification writhe and chirality of alternating links. J. Knot Theory Ramif., 6, 621–632.

    Article  MathSciNet  MATH  Google Scholar 

  • Cerf, C. (1998). A note on the tangle model for DNA recombination. Bull. Math. Biol., 60, 67–78.

    Article  MATH  Google Scholar 

  • Cerf, C., & Stasiak, A. (2000). A topological invariant to predict the three-dimensional writhe of ideal configurations of knots and links. Proc. Natl. Acad. Sci. USA, 97, 3795–3798.

    Article  MathSciNet  MATH  Google Scholar 

  • Cerf, C., & Stasiak, A. (2003). Linear relations between writhe and minimal crossing number in Conway families of ideal knots and links. New J. Phys., 5, 87.1–87.5.

    Article  MathSciNet  Google Scholar 

  • Chen, J., & Seeman, N. C. (1991). Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 350, 631–633.

    Article  Google Scholar 

  • Cozzarelli, N. R., et al. (1984). A topological treatment of recombination and topoisomerases. Cold Spring Harbor Symp. Quant. Biol., 49, 383–400.

    Google Scholar 

  • Darcy, I. K. (2008). Modeling protein-DNA complexes with tangle. Comput. Math. Appl., 55, 924–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Diao, Y., Ernst, C., & Stasiak, A. (2009). A partial ordering of knots through diagrammatic unknotting. J. Knot Theory Ramif., 6, 621–632.

    MathSciNet  Google Scholar 

  • Du, S. M., et al. (1995). Topological transformations of synthetic DNA knots. Biochemistry, 34, 673–682.

    Article  Google Scholar 

  • Erben, C. M., et al. (2007). A self-assembled DNA Bipyramid. J. Am. Chem. Soc., 129, 6992–6993.

    Article  Google Scholar 

  • Ernst, C., & Sumners, D. W. (1990). A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc., 108, 489–515.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuller, F. B. (1971). The writhing number of a space curve. Proc. Natl. Acad. Sci. USA, 68, 815–819.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman, R. P., et al. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 310, 1661–1665.

    Article  Google Scholar 

  • Grayson, N. E., Taormina, A., & Twarock, R. (2009). DNA duplex cage structures with icosahedral symmetry. Theor. Comput. Sci., 410, 1440–1447.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, G., & Qiu, W. Y. (2009). Extended Goldberg polyhedral links with even tangles. MATCH Commun. Math. Comput. Chem., 61, 737–752.

    MathSciNet  MATH  Google Scholar 

  • Hu, G. et al. (2009). The architecture of Platonic polyhedral links. J. Math. Chem., 46, 592–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, G. et al. (2010). The complexity of Platonic and Archimedean polyhedral links. J. Math. Chem., 48, 401–412.

    Article  MathSciNet  MATH  Google Scholar 

  • He, Y., et al. (2008). Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 452, 198–202.

    Article  Google Scholar 

  • Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc., 12, 103–111.

    Article  MATH  Google Scholar 

  • Jonoska, N., & Saito, M. (2002). Boundary components of thickened graphs. In N. Jonoska & N. C. Seeman (Eds.), LNCS: Vol. 2340. DNA 7 (pp. 70–81). Heidelberg: Springer.

    Google Scholar 

  • Jonoska, N., & Twarock, R. (2008). Blueprints for dodecahedral DNA cages. J. Phys. A, Math. Theor., 41, 304043.

    Article  MathSciNet  Google Scholar 

  • Qiu, W. Y. (2000). Knot theory, DNA topology, and molecular symmetry breaking. In D. Bonchev & D. H. Rouvray (Eds.), Mathematical chemistry series: Vol. 6. Chemical topology-applications and techniques (pp. 175–237). Amsterdam: Gordon and Breach (Chap. 3).

    Google Scholar 

  • Qiu, W. Y., & Zhai, X. D. (2005). Molecular design of Goldberg polyhedral links. J. Mol. Struct., Theochem, 756, 163–166.

    Article  Google Scholar 

  • Qiu, W. Y., Wang, Z., & Hu, G. (2010). The chemistry and mathematics of DNA polyhedra. New York: NOVA.

    Google Scholar 

  • Ramsing, N. B., & Jovin, T. M. (1988). Parallel stranded duplex DNA. Nucleic Acids Res., 16, 6659–6676.

    Article  Google Scholar 

  • Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.

    Article  Google Scholar 

  • Seeman, N. C. (1982). Nucleic acid junctions and lattices. J. Theor. Biol., 99, 237–247.

    Article  Google Scholar 

  • Seeman, N. C. (2000). In the Nick of Space: Generalized nucleic acid complementarily and the development of DNA nanotechnology. Synlett, 11, 1536–1548.

    Google Scholar 

  • Shih, W. M., Quispe, J. D., & Joyce, G. F. (2004). A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 427, 618–621.

    Article  Google Scholar 

  • Stasiak, A., et al. (1996). Electrophoretic mobility of DNA knots. Nature, 384, 122–122.

    Article  MathSciNet  Google Scholar 

  • Sumners, D. W., et al. (1995). Analysis of the mechanism of DNA recombination using tangles. Q. Rev. Biophys., 28, 253–313.

    Article  Google Scholar 

  • White, J. H. (1969). Self-linking and the Gauss integral in higher dimensions. Am. J. Math., 91, 693–728.

    Article  MATH  Google Scholar 

  • White, J. H., & Cozzarelli, N. R. (1984). A simple topological method for describing stereoisomers of DNA catenanes and knots. Proc. Natl. Acad. Sci. USA, 81, 3322–3326.

    Article  Google Scholar 

  • White, J. H., Millett, K. C., & Cozzarelli, N. R. (1987). Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination. J. Mol. Biol., 197, 585–603.

    Article  Google Scholar 

  • Zhang, C., et al. (2008). Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proc. Natl. Acad. Sci. USA, 105, 10665–10669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yuan Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Wang, Z. & Qiu, WY. Topological Analysis of Enzymatic Actions on DNA Polyhedral Links. Bull Math Biol 73, 3030–3046 (2011). https://doi.org/10.1007/s11538-011-9659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9659-z

Keywords

Navigation