Skip to main content
Log in

A Model of Oscillatory Blood Cell Counts in Chronic Myelogenous Leukaemia

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In certain blood diseases, oscillations are found in blood cell counts. Particularly, such oscillations are sometimes found in chronic myelogenous leukaemia, and then occur in all the derived blood cell types: red blood cells, white blood cells, and platelets. It has been suggested that such oscillations arise because of an instability in the pluri-potential stem cell population, associated with its regulatory control system. In this paper, we consider how such oscillations can arise in a model of competition between normal (S) and genetically altered abnormal (A) stem cells, as the latter population grows at the expense of the former. We use an analytic model of long period oscillations to describe regions of oscillatory behaviour in the SA phase plane, and give parametric criteria to describe when such oscillations will occur. We also describe a mechanism which can explain dynamically how the transformation from chronic phase to acute phase and blast crisis can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adimy, M., Crauste, F., & Ruan, S. (2005a). Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6, 651–670.

    Article  MathSciNet  MATH  Google Scholar 

  • Adimy, M., Crauste, F., & Ruan, S. (2005b). A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM Journal on Applied Mathematics, 65, 1328–1352.

    Article  MathSciNet  MATH  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. (1989). Molecular biology of the cell. New York: Garland Publishing.

    Google Scholar 

  • Bélair, J., & Mackey, M. C. (1987). A model for the regulation of mammalian platelet productiona. Annals of the New York Academy of Sciences, 504, 280–282 (Perspectives in Biological Dynamics and Theoretical Medicine).

    Article  Google Scholar 

  • Bedi, A., Zehnbauer, B. A., Barber, J. P., Sharkis, S. J., & Jones, R. J. (1994). Inhibition of apoptosis by BCR–ABL in chronic myeloid leukemia. Blood, 83(8), 2038–2044.

    Google Scholar 

  • Bennett, M., & Grunwald, A. J. (2001). Hydroxyurea and periodicity in myeloproliferative disease. European Journal of Haematology, 66(5), 317–323.

    Article  Google Scholar 

  • Bernard, S., Bélair, J., & Mackey, M. C. (2001). Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems. Series B, 1, 233–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Bessonov, N., Pujo-Menjouet, L., & Volpert, V. (2006). Cell modelling of hematopoiesis. Mathematical Modelling of Natural Phenomena, 1, 81–103.

    Article  MathSciNet  Google Scholar 

  • Buckle, A.-M., Mottram, R., Pierce, A., Lucas, G. S., Russell, N., Miyan, J. A., & Whetton, A. D. (2000). The effect of bcr-abl protein tyrosine kinase on maturation and proliferation of primitive haematopoietic cells. Molecular Medicine, 6(10), 892–902.

    Google Scholar 

  • Colijn, C., Fowler, A. C., & Mackey, M. C. (2006). High frequency spikes in long period blood cell oscillations. Journal of Mathematical Biology, 53, 499–519.

    Article  MathSciNet  MATH  Google Scholar 

  • Colijn, C., & Mackey, M. C. (2005). A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. Journal of Theoretical Biology, 237, 117–132.

    Article  MathSciNet  Google Scholar 

  • Cortes, J., Talpaz, M., & Kantarjian, H. (1996). Chronic myelogenous leukaemia: a review. The American Journal of Medicine, 100, 555–570.

    Article  Google Scholar 

  • De Klein, A., Geurts van Kessel, A., & Grosveld, G. (1982). A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature, 300, 765–767.

    Article  Google Scholar 

  • Druker, B. J., Ford, J. M., Sawyers, C. L., Capdeville, R., Baccarani, M., & Goldman, J. M. (2001). Chronic myelogenous leukemia. In American society of hematology education program book (pp. 87–112), Orlando, Florida.

    Google Scholar 

  • Eaves, C., Cashman, J., & Eaves, A. (1998). Defective regulation of leukemic hematopoiesis in chronic myeloid leukemia. Leukemia Research, 22, 1085–1096.

    Article  Google Scholar 

  • Faderl, S., Kantarjian, H. M., & Talpaz, M. (1999). Chronic myelogenous leukemia: update on biology and treatment. Oncology, 13(2), 169–184.

    Google Scholar 

  • Fortin, P., & Mackey, M. C. (1999). Periodic chronic myelogenous leukaemia. British Journal of Haematology, 104, 336–345.

    Article  Google Scholar 

  • Fox, S. I. (1996). Human physiology (5th edn.). Dubuque: Brown.

    Google Scholar 

  • Fowler, A. C., & Mackey, M. C. (2002). Relaxation oscillations in a class of delay differential equations. SIAM Journal on Applied Mathematics, 63(1), 299–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Frassoni, F., Podsta, M., & Piaggio, G. (1999). Normal and leukaemic haematopoiesis in bone marrow and peripheral blood of patients with chronic myeloid leukaemia. Baillieres Clinical Haematology, 12(1/2), 199–208.

    Google Scholar 

  • Goldman, J. (1997). ABC of clinical haematology: chronic myeloid leukaemia. British Medical Journal, 314(7081), 657–665.

    Article  Google Scholar 

  • Gordon, M. Y., Dowding, C. R., Riley, G. P., Goldman, J. M., & Greaves, M. F. (1987). Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature, 328, 342–344.

    Article  Google Scholar 

  • Gordon, M. Y., & Blackett, N. M. (1998). Reconstruction of the hematopoietic system after stem cell transplantation. Cell Transplantation, 7(4), 339–344.

    Article  Google Scholar 

  • Gordon, M. Y., Dazzi, F., Marley, S. B., Lewis, J. L., Nguyen, D., Grand, F. H., Davidson, R. J., & Goldman, J. M. (1999). Cell biology of CML cells. Leukemia, 13, S65–S71.

    Article  Google Scholar 

  • Guerry, D., Dale, D. C., Omine, M., Perry, S., & Wolff, S. M. (1973). Periodic hematopoiesis in human cyclic neutropenia. The Journal of Clinical Investigation, 52, 3220–3230.

    Article  Google Scholar 

  • Haurie, C., Dale, D. C., & Mackey, M. C. (1998). Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood, 92(8), 2629–2640.

    Google Scholar 

  • Haurie, C., Dale, D. C., Rudnicki, R., & Mackey, M. C. (2000). Modeling complex neutrophil dynamics in the grey collie. Journal of Theoretical Biology, 204, 505–519.

    Article  Google Scholar 

  • Hill, J. M., & Meehan, K. R. (1999). Chronic myelogenous leukemia: Curable with early diagnosis and treatment. Postgraduate Medicine, 106(3), 149–159.

    Article  Google Scholar 

  • Hoffbrand, A. V., & Pettit, J. E. (1993). Essential haematology (3rd edn.). Oxford: Blackwell Science.

    Google Scholar 

  • Hughes-Jones, N. C., & Wickramasinghe, S. N. (1997). Lecture notes on haematology (6th edn.). Oxford: Blackwell Science.

    Google Scholar 

  • Iizuka, Y., Horikoshi, A., Sekiya, S., Sawada, U., Ohshima, T., & Amaki, I. (1984). Periodic fluctuation of leukocytes, platelets and reticulocytes in a case of chronic myelocytic leukemia: the relation between leukocyte counts, CFU–C colony formation, CSA and CIA. Acta Haematol. Jpn., 47(1), 71–79.

    Google Scholar 

  • Jorgensen, H. G., & Holyoake, T. L. (2001). A comparison of normal and leukemic stem cell biology in chronic myeloid leukemia. Hematological Oncology, 19, 89–106.

    Article  Google Scholar 

  • Kamada, N., & Uchino, H. (1978). Chronologic sequence in appearance of clinical and laboratory findings characteristic of chronic myelocytic leukemia. Blood, 51(5), 843–850.

    Google Scholar 

  • Kummermehr, J., & Trott, K.-R. (1997). Tumour stem cells. In Stem cells (pp. 401–419). London: Academic Press.

    Google Scholar 

  • Lebowitz, J. L., & Rubinow, S. I. (1969). Grain count distributions in labelled cell populations. Journal of Theoretical Biology, 23, 99–123.

    Article  Google Scholar 

  • Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, G. (1995). Molecular Cell Biology (3rd edn.). New York: Scientific American Books.

    Google Scholar 

  • Mackey, M. C. (1978). A unified hypothesis for the origin of aplastic anemia and periodic haematopoiesis. Blood, 51, 941–956.

    Google Scholar 

  • Mackey, M. C. (1979). Dynamic haematological disorders of stem cell origin. In J. G. Vassileva-Popova & E. V. Jensen (Eds.), Biophysical and biochemical information transfer in recognition (pp. 373–409). New York: Plenum.

    Google Scholar 

  • Mackey, M. C. (1981). Some models in hemopoiesis: predictions and problems. In M. Rotenberg (Ed.), Biomathematics and cell kinetics (pp. 23–28). North Holland: Elsevier.

    Google Scholar 

  • Mackey, M. C. (1997). Mathematical models of hematopoietic cell replication and control. In H. G. Othmer, F. R. Adler, M. A. Lewis, & J. C. Dallon (Eds.), The art of mathematical modelling: case studies in ecology, physiology and biofluids (pp. 149–178). New Jersey: Prentice-Hall.

    Google Scholar 

  • Mackey, M. C., & Rudnicki, R. (1994). Global stability in a delayed partial differential equation describing cellular replication. Journal of Mathematical Biology, 33, 89–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahaffy, J. M., Bélair, J., & Mackey, M. C. (1998). Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. Journal of Theoretical Biology, 190, 135–146.

    Article  Google Scholar 

  • Michor, F., Hughes, T. P., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C. L., & Nowak, M. A. (2005). Dynamics of chronic myeloid leukaemia. Nature, 435, 1267–1270.

    Article  Google Scholar 

  • Moore, H., & Li, N. K. (2004). A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. Journal of Theoretical Biology, 227, 513–523.

    Article  MathSciNet  Google Scholar 

  • Neiman, B. (2000). A mathematical model of chronic myelogenous leukemia. M.Sc. Dissertation, Oxford University.

  • Nowell, P. C., & Hungerford, D. A. (1960). A minute chromosome in human chronic granulocytic leukemia. Science, 132, 1497–1501.

    Google Scholar 

  • Potten, C. S. (1997). Stem cells. New York: Academic Press.

    Google Scholar 

  • Pujo-Menjouet, L., Bernard, S., & Mackey, M. C. (2005). Long period oscillations in a G 0 model of hematopoietic stem cells. SIAM Journal on Applied Dynamical Systems, 4, 312–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Pujo-Menjouet, L., & Mackey, M. C. (2004). Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biologies, 327, 235–244.

    Article  Google Scholar 

  • Rubinow, S. I., & Lebowitz, J. L. (1975). A mathematical model of neutrophil production and control in normal Man. Journal of Mathematical Biology, 1, 187–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinow, S. I., & Lebowitz, J. L. (1976). A mathematical model of the acute myeloblastic leukemic state in Man. Biophysical Journal, 16, 897–910.

    Article  Google Scholar 

  • Schwarzenberger, P., Kolls, J. K., & La Russa, V. (2002). Hematopoietic stem cells. Cancer Investigation, 20(1), 124–138.

    Article  Google Scholar 

  • Strife, A., & Clarkson, B. (1988). Biology of chronic myelogenous leukemia: Is discordant maturation the primary defect? Seminars in Hematology, 25(1), 1–19.

    Google Scholar 

  • Strife, A., Lambek, C., Wisniewski, D., Wachter, M., Gulati, S. C., & Clarkson, B. D. (1988). Discordant maturation as the primary biological defect in chronic myelogenous leukemia. Cancer Research, 48, 1035–1041.

    Google Scholar 

  • Whittaker, J. A. (1987). Leukaemia. Oxford: Blackwell Scientific Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fowler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobnjak, I., Fowler, A.C. A Model of Oscillatory Blood Cell Counts in Chronic Myelogenous Leukaemia. Bull Math Biol 73, 2983–3007 (2011). https://doi.org/10.1007/s11538-011-9656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9656-2

Keywords

Navigation