Skip to main content
Log in

Oscillations in a white blood cell production model with multiple differentiation stages

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work we prove occurrence of a super-critical Hopf bifurcation in a model of white blood cell formation structured by three maturation stages. We provide an explicit analytical expression for the bifurcation point depending on model parameters. The Hopf bifurcation is a unique feature of the multi-compartment structure as it does not exist in the corresponding two-compartment model. It appears for a parameter set different from the parameters identified for healthy hematopoiesis and requires changes in at least two cell properties. Model analysis allows identifying a range of biologically plausible parameter sets that can explain persistent oscillations of white blood cell counts observed in some hematopoietic diseases. Relating the identified parameter sets to recent experimental and clinical findings provides insights into the pathological mechanisms leading to oscillating blood cell counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alangari A, Alsultan A, Osman M, Anazi S, Alkuraya F (2013) A novel homozygous mutation in G6PC3 presenting as cyclic neutropenia and severe congenital neutropenia in the same family. J Clin Immunol 33(8):1403–1406

    Google Scholar 

  • Baird J, Minniti C, Lee J, Tian X, Wu C, Jackson M, Alam S, Taylor JG, Kato G (2015) Oscillatory haematopoiesis in adults with sickle cell disease treated with hydroxycarbamide. Br J Haematol 168(5):737–746

    Google Scholar 

  • Bernard S, Belair J, Mackey M (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223(3):283–298

    MathSciNet  Google Scholar 

  • Boo Y, Nam M, Lee E, Lee K (2015) Cyclic neutropenia with a novel gene mutation presenting with a necrotizing soft tissue infection and severe sepsis: case report. BMC Pediatr 15:34

    Google Scholar 

  • Brown K, Wekell P, Osla V, Sundqvist M, Sävman K, Fasth A, Karlsson A, Berg S (2010) Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. BMC Pediatr 10:65

    Google Scholar 

  • Busse J, Gwiazda P, Marciniak-Czochra A (2016) Mass concentration in a nonlocal model of clonal selection. J Math Biol 73(4):1001–1033

    MathSciNet  MATH  Google Scholar 

  • Cartwright GE, Athens JW, Wintrobe MM (1964) The kinetics of granulopoiesis in normal man. Blood 24:780–803

    Google Scholar 

  • Cipe F, Celiksoy M, Erturk B, Aydogmus C (2018) Cyclic manner of neutropenia in a patient with HAX-1 mutation. Pediatr Hematol Oncol 22:1–5

    Google Scholar 

  • Colijn C, Mackey M (2005) A mathematical model of hematopoiesis: II. cyclical neutropenia. J Theor Biol 237(2):133–146

    MathSciNet  Google Scholar 

  • Colijn C, Dale D, Foley C, Mackey M (2006) Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math Model Nat Phenom 1:45–69

    MathSciNet  MATH  Google Scholar 

  • Dale D, Graw RG (1974) Transplantation of allogenic bone marrow in canine cyclic neutropenia. Science 183(4120):83–84

    Google Scholar 

  • Dale D, Hammond W (1988) Cyclic neutropenia: a clinical review. Blood Rev 2(3):178–185

    Google Scholar 

  • Dale D, Alling D, Wolff S (1972) Cyclic hematopoiesis: the mechanism of cyclic neutropenia in grey collie dogs. J Clin Invest 51(8):2197–2204

    Google Scholar 

  • Dale D, Alling D, Wolff S (1973) Application of time series analysis to serial blood neutrophil counts in normal individuals and patients receiving cyclophosphamide. Br J Haematol 24(1):57–644

    Google Scholar 

  • Dale D, Bolyard A, Aprikyan A (2002) Cyclic neutropenia. Semin Hematol 39(2):89–94

    Google Scholar 

  • Dingli D, Antal T, Traulsen A, Pacheco J (2009) Progenitor cell self-renewal and cyclic neutropenia. Cell Prolif 42(3):330–338

    Google Scholar 

  • Gantmacher F (1964) The theory of matrices 2. Chelsea Publishing, Chelsea

    Google Scholar 

  • Gatti R, Robinson W, Deinard A, Nesbit M, McCullough J, Ballow M, Good R (1973) Cyclic leukocytosis in chronic myelogenous leukemia: new perspectives on pathogenesis and therapy. Blood 41(6):771–782

    Google Scholar 

  • Germeshausen M, Deerberg S, Peter Y, Reimer C, Kratz C, Ballmaier M (2013) The spectrum of elane mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34(6):905–914

    Google Scholar 

  • Getto P, Marciniak-Czochra A, Nakata Y, Vivanco M (2013) Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci 245:258–268

    MathSciNet  MATH  Google Scholar 

  • Gopalsamy K, Kulenovic M, Ladas G (1990) Oscillations and global attractivity in models of hematopoiesis. J Dyn Differ Equ 2:117–132

    MathSciNet  MATH  Google Scholar 

  • Grenda D, Murakami M, Ghatak J, Xia J, Boxer L, Dale D, Dinauer M, Link D (2007) Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 110(13):4179–4187

    Google Scholar 

  • Guerry D, Dale D, Omine M, Perry S, Wolff S (1973) Periodic hematopoiesis in human cyclic neutropenia. J Clin Invest 52(12):3220–3230

    Google Scholar 

  • Hammond W, Price T, Souza L, Dale D (1989) Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med 320(20):1306–1311

    Google Scholar 

  • Hammond W, Chatta G, Andrews R, Dale D (1992) Abnormal responsiveness of granulocyte-committed progenitor cells in cyclic neutropenia. Blood 79(10):2536–2539

    Google Scholar 

  • Haurie C, Dale D, Mackey M (1998) Cyclical neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92(8):2629–2640

    Google Scholar 

  • Haurie C, Dale D, Rudnicki R, Mackey M (2000) Modeling complex neutrophil dynamics in the grey collie. J Theor Biol 204(4):505–519

    Google Scholar 

  • Hirayama Y, Sakamaki S, Tsuji Y, Matsunaga T, Niitsu Y (2003) Cyclic platelet and leukocyte count oscillation in chronic myelocytic leukemia regulated by the negative feedback of transforming growth factor beta. Int J Hematol 77(1):71–74

    Google Scholar 

  • Jandl JH (1996) Blood cell formation. In: Jandl JH (ed) Textbook of hematology. Little, Brown and Company, Boston, pp 1–69

    Google Scholar 

  • Johnson N, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Kazarinoff N, van denDriessche P (1979) Control of oscillations in hematopoiesis. Science 203(4387):1348–1349

    MathSciNet  MATH  Google Scholar 

  • Kelly L, Gilliland D (2002) Genetics of myeloid leukemias. Annu Rev Genom Hum Genet 3:179–198

    Google Scholar 

  • Kennedy B (1970) Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood 35(6):751–760

    Google Scholar 

  • Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, Niiro H, Yurino A, Miyawaki K, Takenaka K, Iwasaki H, Akashi K (2015) A TIM-3/GAL-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17(3):341–352

    Google Scholar 

  • King-Smith E, Morley A (1970) Computer simulation of granulopoiesis: normal and impaired granulopoiesis. Blood 36(2):254–262

    Google Scholar 

  • Krance R, Spruce W, Forman S, Rosen R, Hecht T, Hammond W, Blume K (1982) Human cyclic neutropenia transferred by allogeneic bone marrow grafting. Blood 60(6):1263–1266

    Google Scholar 

  • Kraszewska-Gaomba B, Matkowska-Kocjan A, Szenborn L (2015) The pathogenesis of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome: a review of current research. Mediat Inflamm 2015:563876

    Google Scholar 

  • Kuznecov JA (2004) Elements of applied bifurcation theory, vol 112, 3rd edn. Springer, New York. ISBN 0-387-21906-4; 978-0-387-21906-6

  • Langlois G, Arnold D, Potts J, Leber B, Dale D, Mackey M (2018) Cyclic thrombocytopenia with statistically significant neutrophil oscillations. Clin Case Rep 6(7):1347–1352

    Google Scholar 

  • Layton J, Hockman H, Sheridan W, Morstyn G (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74:1303–1307

    Google Scholar 

  • Lei J, Mackey M (2011) Multistability in an age-structured model of hematopoiesis: cyclical neutropenia. J Theor Biol 270(1):143–153

    MathSciNet  MATH  Google Scholar 

  • Lensink D, Barton A, Appelbaum F, Hammond WP (1986) Cyclic neutropenia as a premalignant manifestation of acute lymphoblastic leukemia. Am J Hematol 22(1):9–16

    Google Scholar 

  • Lord B, Gurney H, Chang J, Thatcher N, Crowther D, Dexter T (1992) Haemopoietic cell kinetics in humans treated with rGM-CSF. Int J Cancer 50:26–31

    Google Scholar 

  • Mackey M (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5):941–956

    Google Scholar 

  • Makaryan V, Zeidler C, Bolyard A, Skokowa J, Rodger E, Kelley M, Boxer L, Bonilla M, Newburger P, Shimamura A, Zhu B, Rosenberg P, Link D, Welte K, Dale D (2015) The diversity of mutations and clinical outcomes for elane-associated neutropenia. Curr Opin Hematol 22(1):3–11

    Google Scholar 

  • Marciniak-Czochra A, Stiehl T, Jäger W, Ho AD, Wagner W (2009) Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev 18:377–385

    Google Scholar 

  • Marciniak-Czochra A, Mikelic A, Stiehl T (2018) Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations. Math Methods Appl Sci 41:5691–5710

    MathSciNet  MATH  Google Scholar 

  • Metcalf D (2008) Hematopoietic cytokines. Blood 111:485–491

    Google Scholar 

  • Migliaccio A, Migliaccio G, Dale D, Hammond W (1990) Hematopoietic progenitors in cyclic neutropenia: effect of granulocyte colony-stimulating factor in vivo. Blood 75(10):1951–1959

    Google Scholar 

  • Morgan D, Desai A, Edgar B, Glotzer M, Heald R, Karsenti E, Nasmyth K, Pines J, Sherr C (2007) The cell cycle. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter R (eds) Molecular biology of the cell, 5th edn. Garland Science, New York City

    Google Scholar 

  • Morley A (1966) A neutrophil cycle in healthy individuals. Lancet 2(7475):1220–1222

    Google Scholar 

  • Morley A, Stohlman F Jr (1970) Cyclophosphamide-induced cyclical neutropenia: an animal model of a human periodic disease. N Engl J Med 282(12):643–646

    Google Scholar 

  • Okolo O, Katsanis E, Yun S, Reveles C, Anwer F (2017) Allogeneic transplant in elane and mefv mutation positive severe cyclic neutropenia: review of prognostic factors for secondary severe events. Case Rep Hematol 2017:5375793

    Google Scholar 

  • Pillay J, den Braber I, Vrisekoop N, Kwast L, de Boer R, Borghans J, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116(4):625–627

    Google Scholar 

  • Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Google Scholar 

  • Rodriguez A, Lutcher C (1976) Marked cyclic leukocytosis-leukopenia in chronic myelogenous leukemia. Am J Med 60(7):1041–1047

    Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2011) Characterization of stem cells using mathematical models of multistage cell lineages. Math Comput Model 53:1505–1517

    MathSciNet  MATH  Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2012) Mathematical modelling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom 7:166–202

    MathSciNet  MATH  Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2017) Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling. Curr Opin Syst Biol 5:112–120

    Google Scholar 

  • Stiehl T, Marciniak-Czochra A (2019) How to characterize stem cells? Contributions from mathematical modeling. Current stem cell reports. https://doi.org/10.1007/s40778-019-00155-0

    Google Scholar 

  • Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2014a) Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface 11:20140079

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2014b) Assessing hematopoietic (stem-) cell behavior during regenerative pressure. Adv Exp Med Biol 844:347–367

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2014c) The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transplant 49:30–37

    Google Scholar 

  • Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2015) Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res 75:940–949

    Google Scholar 

  • Stiehl T, Ho A, Marciniak-Czochra A (2018) Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis. Sci Rep 8(1):2809

    Google Scholar 

  • Sundqvist M, Wekell P, Osla V, Bylund J, Christenson K, Savman K, Foell D, Cabral D, Fasth A, Berg S, Brown K, Karlsson A (2013) Increased intracellular oxygen radical production in neutrophils during febrile episodes of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome. Arthritis Rheum 65:2971–2983

    Google Scholar 

  • von Schulthess G, Mazer N (1982) Cyclic neutropenia (cn): a clue to the control of granulopoiesis. Blood 59(1):27–37

    Google Scholar 

  • Walenda T, Stiehl T, Braun H, Froebel J, Ho A, Schroeder T, Goecke T, Rath B, Germing U, Marciniak-Czochra A, Wagner W (2014) Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput Biol 10:e1003599

    Google Scholar 

  • Wang Y, Krivtsov A, Sinha A, North T, Goessling W, Feng Z, Zon L, Armstrong S (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653

    Google Scholar 

  • Wheldon T (1975) Mathematical models of oscillatory blood cell production. Math Biosci 24:289–305

    MATH  Google Scholar 

  • Whited K, Baile M, Currier P, Claypool S (2013) Seven functional classes of barth syndrome mutation. Hum Mol Genet 22(3):483–492

    Google Scholar 

  • Wright D, LaRussa V, Salvado A, Knight R (1989) Abnormal responses of myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor in human cyclic neutropenia. J Clin Invest 83(4):1414–1418

    Google Scholar 

Download references

Acknowledgements

This work was supported by research funding from the German Research Foundation DFG (Collaborative Research Center SFB 873, Maintenance and Differentiation of Stem Cells in Development and Disease, subproject B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Marciniak-Czochra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Supplementary calculations to the proof of Theorem 2

In the following we provide the calculations leading to Eq. (3).

$$\begin{aligned}&\, b_1\,b_2 - b_3\\&\quad = \left[ \left( 1-\frac{a_2}{a_1}\right) \,p_2 + \left( 1-\frac{a_2}{a_1}\,\left( 1-\frac{1}{2\,a_1}\right) \, \frac{1}{2-\frac{a_2}{a_1}}\right) \,d_3\right] \\&\qquad \cdot \left[ \left( 1-\frac{a_2}{a_1}\right) \, \left( 1-\frac{a_2}{a_1}\,\left( 1-\frac{1}{2\,a_1}\right) \, \frac{1}{2-\frac{a_2}{a_1}}\right) - \left( 1-\frac{1}{2\,a_1}\right) \,\left( 1-2\,\frac{a_2}{a_1}\right) \right] \,d_3\,p_2\\&\qquad - \left( 1-\frac{1}{2\,a_1}\right) \,\left( 1-\frac{a_2}{a_1}\right) \,d_3\,p_2\\&\quad = \left[ \left( 1-\frac{a_2}{a_1}\right) \,p_2 + \left( 1-\frac{a_2}{a_1}\,\left( 1-\frac{1}{2\,a_1}\right) \, \frac{1}{2-\frac{a_2}{a_1}}\right) \,d_3\right] \\&\qquad \cdot \left( 1-\frac{1}{2\,a_1}\right) \, \left( 1-\frac{a_2}{a_1}\right) \, \left[ \frac{1}{1-\frac{1}{2\,a_1}} - \frac{a_2}{a_1}\,\frac{1}{2-\frac{a_2}{a_1}} - \frac{1-2\,\frac{a_2}{a_1}}{1-\frac{a_2}{a_1}} \right] \,d_3\,p_2\\&\qquad - \left( 1-\frac{1}{2\,a_1}\right) \,\left( 1-\frac{a_2}{a_1}\right) \,d_3\,p_2\\&\quad = \left( 1-\frac{1}{2\,a_1}\right) \,\left( 1-\frac{a_2}{a_1}\right) \, \left( \left[ \left( 1-\frac{a_2}{a_1}\right) \,p_2 + \left( 1-\frac{a_2}{a_1}\, \left( 1-\frac{1}{2\,a_1}\right) \,\frac{1}{2-\frac{a_2}{a_1}}\right) \,d_3\right] \right. \\&\qquad \left. \cdot \left[ \frac{1}{2\,a_1}\frac{1}{1-\frac{1}{2\,a_1}} + \frac{a_2}{a_1}\,\frac{1}{\left( 2-\frac{a_2}{a_1}\right) \,\left( 1-\frac{a_2}{a_1}\right) } \right] -1\right) \,d_3\,p_2\\&\quad = \left( 1-\frac{1}{2\,a_1}\right) \,\left( 1-\frac{a_2}{a_1}\right) \, \left( \left[ \left( 1-\frac{a_2}{a_1}\right) \,p_2 + \beta \left( a_1,a_2\right) \,d_3\right] \cdot \gamma \left( a_1,a_2\right) -1\right) \,d_3\,p_2. \end{aligned}$$

Parameter configurations leading to Hopf bifurcation

Constellation 1:

Constellation 2:

\(p_1\) increased

\(p_1\) increased

\(a_2\)

\(a_1\)

decreased

increased

\(d_3\) decreased (\(<0.5/{\hbox {day}}\))

\(d_3\) decreased (close to \(0.1/{\hbox {day}}\))

Example:

Example:

   \(p_1=0.7171/{\hbox {day}}\)

   \(p_1=0.9697/{\hbox {day}}\)

   \(a_2=0.32\)

   \(a_1=0.99\)

   \(d_3=0.132/{\hbox {day}}\)

   \(d_3=0.132/{\hbox {day}}\)

Constellation 3:

Constellation 4:

\(p_1\) increased

\(p_1\) increased

\(a_2\)

\(p_2\)

increased (close to 1)

decreased

\(d_2\) increased

\(d_2\) increased

Example:

Example:

   \(p_1=0.7778/{\hbox {day}}\)

   \(p_1=0.8687/{\hbox {day}}\)

   \(a_2=0.99\)

   \(p_2=0.0201/{\hbox {day}}\)

   \(d_2=2.6644/{\hbox {day}}\)

   \(d_2=0.2541/{\hbox {day}}\)

Constellation 5:

Constellation 6:

\(p_1\) increased

\(p_2\) decreased (close to

\(d_2\)

0.01)

increased

\(a_2\) increased (close to 1)

\(d_3\) decreased

\(d_2\) increased

Example:

Example:

   \(p_1=0.707/{\hbox {day}}\)

   \(p_2=0.01/{\hbox {day}}\)

   \(d_2=0.2541/{\hbox {day}}\)

   \(a_2=0.99\)

   \(d_3=0.132/{\hbox {day}}\)

   \( d_2=0.5287/{\hbox {day}}\)

Constellation 7:

Constellation 8:

\(p_2\) decreased

\(a_1\) increased

\(d_2\)

\(d_1\)

increased

slightly increased (\(<0.1/{\hbox {day}}\))

\(d_3\) decreased

\(d_2\) increased

Example:

Example:

   \(p_2=0.01/{\hbox {day}}\)

   \(a_1=0.95\)

   \(d_2=0.0405/{\hbox {day}}\)

   \(d_1=0.0405/{\hbox {day}}\)

   \(d_3=0.132/{\hbox {day}}\)

   \(d_2=2.7559/{\hbox {day}} \)

Constellation 9:

 

\(a_2\) increased

 

\(d_1\)

 

slightly increased (\(<0.05/{\hbox {day}}\))

 

\(d_2\) increased

 

Example:

 

   \(a_2=0.95\)

 

   \(d_1=0.0405/{\hbox {day}}\)

 

   \(d_2=2.5423/{\hbox {day}}\)

 

Biologically plausible parameter regions where the Hopf-bifurcation exists are visualized in Fig. 5. The reported values for \(a_1\) and \(a_2\) correspond to the self-renewal fraction in presence of maximal stimulation. The self-renewal fraction at time t is given by \(a_1s(t)\) and \(a_2s(t)\) with \(s(t)<1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knauer, F., Stiehl, T. & Marciniak-Czochra, A. Oscillations in a white blood cell production model with multiple differentiation stages. J. Math. Biol. 80, 575–600 (2020). https://doi.org/10.1007/s00285-019-01432-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01432-6

Keywords

Mathematics Subject Classification

Navigation