Skip to main content
Log in

Bistability Analysis of an Apoptosis Model in the Presence of Nitric Oxide

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bistability in apoptosis, or programmed cell death, is crucial for the healthy functioning of multicellular organisms. The aim in this study is to show the presence of bistability in a mitochondria-dependent apoptosis model under nitric oxide effects using chemical reaction network theory. The model equations are a set of coupled ordinary differential equations arising from the assumed mass action kinetics. Whether these equations have a capacity for bistability (cell survival and apoptosis) is determined using a modular approach in which the model is decomposed into modules. Each module contains only a subset of the whole model and is analyzed separately. It is seen that bistability in a module is preserved throughout the whole model after adding the remaining reactions in the pathway on these modules. It is also found that inhibitor effect of some proteins and the appearance of a reacting protein in a later stage as a product is a desired feature but not sufficient for bistability (in the absence of cooperativity effects). On the whole model, two apoptotic and two cell survival states are obtained depending on the initial cell conditions. The results suggest that the antiapoptotic effects of nitric oxide species are responsible for the bistable character of the apoptotic pathway when cooperativity is not assumed in the apoptosome formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed., pp. 1010–1026). Garland Science.

    Google Scholar 

  • Bagci, E. Z., Vodovotz, Y., Billiar, T., Ermentrout, B., & Bahar, I. (2006). Bistability in apoptosis: roles of bax, Bcl-2, and mitochondrial permeability transition pores. Biophys. J., 90, 1546–1559.

    Article  Google Scholar 

  • Bagci, E. Z., Vodovotz, Y., Billiar, T., Ermentrout, B., & Bahar, I. (2008). Computational insights on the competing effects of nitric oxide in regulating apoptosis. PLoS J., 3, e2249.

    Google Scholar 

  • Banaji, M., & Craciun, G. (2009). Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun. Math. Sci., 7(4), 867–900.

    MATH  MathSciNet  Google Scholar 

  • Beere, H. M., Wolf, B. B., Cain, K., Mosser, D. D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R. I., Cohen, G. M., & Green, D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of Procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol., 2, 469–475.

    Article  Google Scholar 

  • Bentele, M., Lavrik, I., Ulrich, M., Stosser, S., Heermann, D. W., Kalthoff, H., Krammer, P. H., & Eils, R. (2004). Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol., 166, 839–851.

    Article  Google Scholar 

  • Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM J. Appl. Math., 65(5), 1526–1546.

    Article  MATH  MathSciNet  Google Scholar 

  • Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA, 103(23), 8697–8702.

    Article  Google Scholar 

  • Curtin, J. F., & Cotter, T. G. (2003). Live and let die: regulatory mechanisms in FAS-mediated apoptosis. Cell. Signal., 15, 983–992.

    Article  Google Scholar 

  • Eissing, T., Conzelmann, H., Gilles, E. D., Allgöwer, F., Bullinger, E., & Scheurich, P. (2004). Bistability analyses of a caspase-activation model for receptor-induced apoptosis. J. Biol. Chem., 279, 36892–36897.

    Article  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Feinberg, M. (1977). Mathematical aspects of mass-action kinetics. In N. Amundson & L. Lapidus (Eds.), Chemical reaction theory: a review. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Fussenegger, M., Bailey, J. E., & Varner, J. (2000). A mathematical model of caspase function in apoptosis. Nat. Biotechnol. 18, 768–774.

    Article  Google Scholar 

  • Himmelblau, D. (1973). Morphology of decomposition. In D. Himmelblau (Ed.), Decomposition of large-scale problems. Amsterdam: North-Holland.

    Google Scholar 

  • Hu, T. M., Hayton, W. L., & Mallery, S. R. (2006). Kinetic modeling of nitric-oxide associated reaction network. Pharm. Res., 23, 1702–1711.

    Article  Google Scholar 

  • Lavrik, I. N., Golks, A., Riess, D., Bentele, M., Eils, R., & Krammer, P. H. (2007). Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J. Biol. Chem., 282, 13664–13671.

    Article  Google Scholar 

  • Legewie, S., Blüthgen, N., & Herzel, H. (2006). Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput. Biol., 2, e120.

    Article  Google Scholar 

  • Loughran, P. A., Bagci, E. Z., Zamora, R., Vodovotz, Y., & Billiar, T. R. (2009). In L. Ignarro (Ed.), The role of nitric oxide in apoptosis and autophagy: biochemical and computational studies, nitric oxide.

    Google Scholar 

  • Nakabayashi, J., & Sasaki, A. (2006). A mathematical model for apoptosome assembly: the optimal cytochrome C/Apaf-1 ratio. J. Theor. Biol., 242, 280–287.

    Article  MathSciNet  Google Scholar 

  • Özören, N., & El-Deiry, W. S. (2002). Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia, 4, 551–557.

    Article  Google Scholar 

  • Potter, S. (2009). Mitochondria… more than meets the eye. LSJM, 1, 16–17.

    Google Scholar 

  • Ryu, S., Lin, S., Ugel, N., Antoniotti, M., & Mishra, B. (2009). Mathematical modeling of the formation of apoptosome in intrinsic pathway of apoptosis. Syst. Synth. Biol., 2, 49–66.

    Article  Google Scholar 

  • Saez-Rodriguez, J., Hammerle-Fickinger, A., Dalal, O., Klamt, S., Gilles, E. D., & Conradi, C. (2008). Multistability of signal transduction motifs. IET Syst. Biol., 2, 80–93.

    Article  Google Scholar 

  • Siehs, C., Oberbauer, R., Mayer, G., Lukas, A., & Mayer, B. (2002). Discrete simulation of regulatory homo- and heterodimerization in the apoptosis effector phase. Bioinformatics, 18, 67–76.

    Article  Google Scholar 

  • Stucki, J. W., & Simon, H. U. (2005). Mathematical modeling of caspase-3 activation and degradation. J. Theor. Biol., 234, 123–131.

    Article  MathSciNet  Google Scholar 

  • Xiong, W., & Ferrell, J. E. Jr. (2003). A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426(6965), 460–465.

    Article  Google Scholar 

  • Zou, H., Li, Y., Lui, X., & Wang, X. (1999). An Apaf-1. Cytochrome C multimeric complex is a functional apoptosome that activates Caspase-9. J. Biol. Chem., 274(17), 11549–11556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet C. Camurdan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Chemical Reaction Network Theory 877 KB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S.M., Bagci, E.Z. & Camurdan, M.C. Bistability Analysis of an Apoptosis Model in the Presence of Nitric Oxide. Bull Math Biol 73, 1952–1968 (2011). https://doi.org/10.1007/s11538-010-9613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9613-5

Keywords

Navigation