Skip to main content
Log in

Coexistence and Spread of Competitors in Heterogeneous Landscapes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Competition between species is ubiquitous in nature and therefore widely studied in ecology through experiment and theory. One of the central questions is under which conditions a (rare) invader can establish itself in a landscape dominated by a resident species at carrying capacity. Applying the same question with the roles of the invader and resident reversed leads to the principle that “mutual invasibility implies coexistence.” A related but different question is how fast a locally introduced invader spreads into a landscape (with or without competing resident), provided it can invade. We explore some aspects of these questions in a deterministic, spatially explicit model for two competing species with discrete non-overlapping generations in a patchy periodic environment. We obtain threshold values for fragmentation levels and dispersal distances that allow for mutual invasion and coexistence even if the non-spatial competition model predicts competitive exclusion. We obtain exact results when dispersal is governed by a Laplace kernel. Using the average dispersal success, we develop a mathematical framework to obtain approximate results that are independent of the exact dispersal patterns, and we show numerically that these approximations are very accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berestycki, H., Hamel, F., Roques, L., 2005. Analysis of the periodically fragmented environment model. I. Species persistence. J. Math. Biol. 51, 75–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Bolker, B., Pacala, S., 1999. Spatial moment equations for plant competition: Understanding the advantages of local dispersal. Am. Nat. 153(6), 575–602.

    Article  Google Scholar 

  • Botsford, L.W., Hastings, A., Gaines, S.D., 2001. Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol. Lett. 4, 144–150.

    Article  Google Scholar 

  • Chesson, P., 2000. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237.

    Article  MATH  Google Scholar 

  • Cruywagen, G., Kareiva, P., Lewis, M., Murray, J., 1996. Competition in a spatially heterogeneous environment: Modelling the risk of spread of a genetically engineered population. Theor. Popul. Biol. 49(1), 1–38.

    Article  MATH  Google Scholar 

  • Dewhirst, S., Lutscher, F., 2009. Dispersal in heterogeneous habitats: Thresholds, spatial scales and approximate rates of spread. Ecology 90(5), 1338–1345.

    Article  Google Scholar 

  • Fagan, W., Lutscher, F., 2006. The average dispersal success approximation: A bridge linking home range size, natal dispersal, and metapopulation dynamics to critical patch size and reserve design. Ecol. Appl. 16(2), 820–828.

    Article  Google Scholar 

  • Fisher, R., 1937. The advance of advantageous genes. Ann. Eugen. 7, 355–369.

    Google Scholar 

  • Gurnell, J., Wauters, L.A., Lurz, P.W.W., Tosi, G., 2004. Alien species and interspecific competition: Effects of introduced eastern grey squirrels on red squirrel population dynamics. J. Anim. Ecol. 73, 26–35.

    Article  Google Scholar 

  • Hart, D., Gardner, R., 1997. A spatial model for the spread of invading organisms subject to competition. J. Math. Biol. 35, 935–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K., Dugaw, C., Elmendorf, A., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B., Moore, K., Taylor, C., Thomson, D., 2005. The spatial spread of invasions: New developments in theory and evidence. Ecol. Lett. 8, 91–101.

    Article  Google Scholar 

  • Hosono, Y., 1998. The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol. 60, 435–458.

    Article  MATH  Google Scholar 

  • Kawasaki, K., Shigesada, N., 2007. An integrodifference model for biological invasions in a periodically fragmented environment. Jpn. J. Ind. Appl. Math. 24, 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N., 2003. Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64, 291–302.

    Article  MATH  Google Scholar 

  • Kot, M., 2001. Elements of Mathematical Ecology,. Cambridge Univ. Press, Cambridge.

    Book  Google Scholar 

  • Levin, S., Culver, D., 1971. Regional coexistence of species and competition between rare species. Proc. Natl. Acad. Sci. USA 6, 1246–1248.

    Article  Google Scholar 

  • Lewis, M., Li, B., Weinberger, H.F., 2002. Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., 2008. Density-dependent dispersal in integrodifference equations. J. Math. Biol. 56(4), 499–524.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., Lewis, M.A., 2004. Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol. 48, 293–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., Lewis, M., McCauley, E., 2006. The effects of heterogeneity on population persistence and invasion in rivers. Bull. Math. Biol. 68(8), 2129–2160.

    Article  MathSciNet  Google Scholar 

  • Murrell, D., Law, R., 2003. Heteromyopia and the spatial coexistence of similar competitors. Ecol. Lett. 6, 48–59.

    Article  Google Scholar 

  • Neubert, M.G., Caswell, H., 2000. Demography and dispersal: Calculation and sensitivity analysis of invasion speeds for structured populations. Ecology 81(6), 1613–1628.

    Article  Google Scholar 

  • Neubert, M., Kot, M., Lewis, M.A., 1995. Dispersal and pattern formation in a discrete-time predator–prey model. Theor. Popul. Biol. 48(1), 7–43.

    Article  MATH  Google Scholar 

  • Okubo, A., Maini, P., Williamson, M., Murray, J., 1989. On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B 238, 113–125.

    Article  Google Scholar 

  • Pacala, S., Roughgarden, J., 1982. Spatial heterogeneity and interspecific competition. Theor. Popul. Biol. 21, 92–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, T., 2004. Seed dispersal and biological invasion: A mathematical analysis. Ph.D. thesis, University of Utah.

  • Robbins, T.C., Lewis, M.A., 2006. Modeling population spread in heterogeneous environments using integrodifference equations. Preprint.

  • Shigesada, N., Kawasaki, K., Teramoto, E., 1986. Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam, J.G., 1951. Random dispersal in theoretical populations. Biometrika 38, 196–218.

    MathSciNet  MATH  Google Scholar 

  • Snyder, R., Chesson, P., 2003. Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol. Lett. 6, 301–309.

    Article  Google Scholar 

  • Tilman, D., Kareiva, P. (Eds.) 1997. Spatial Ecology. Monographs in Population Biology, vol. 30. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Van Kirk, R.W., Lewis, M.A., 1997. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 59(1), 107–137.

    Article  MATH  Google Scholar 

  • Weinberger, H.F., 2002. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger, H., Kawasaki, K., Shigesada, N., 2008. Spreading speeds of spatially-periodic integro-difference models for populations with non-monotone recruitment functions. J. Math. Biol. 57, 387–411.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof Lutscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samia, Y., Lutscher, F. Coexistence and Spread of Competitors in Heterogeneous Landscapes. Bull. Math. Biol. 72, 2089–2112 (2010). https://doi.org/10.1007/s11538-010-9529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9529-0

Keywords

Navigation