Skip to main content
Log in

Model of Active Transport of Ions Through Diatom Cell Biomembrane

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model of the active transport of ions in the Cascinodiscus wailesii diatom cell is constructed taking into account the transport of H+, Na+, K+, Ca+2, \(\mathrm{NO}_{3}^{-}\), Cl, and \(\mathrm{NH}_{4}^{+}\) ions. This model allows calculating intracellular concentrations of basic ions and the biomembrane resting potential. A hierarchical algorithm “one ion—one transport system” is used in the model. The dependence of the resting potential on the extracellular concentration of potassium is plotted in terms of the model. The calculated values are in good agreement with the corresponding experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharyya, P., Volcani, B.E., 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proc. Natl. Acad. Sci. USA 77(11), 6386–6390.

    Article  Google Scholar 

  • Boalch, G.T., 1987. Changes in the phytoplankton of the western English Channel in recent years. Br. Phycol. J. 22, 225–235.

    Article  Google Scholar 

  • Boyd, C.M., Gradmann, D., 1999a. Electrophysiology of the marine diatom Coscinodiscus wailesii. I. Endogenous changes of membrane voltage and resistance. J. Exp. Bot. 50, 445–452.

    Article  Google Scholar 

  • Boyd, C.M., Gradmann, D., 1999b. Electrophysiology of the marine diatom Coscinodiscus wailesii. II. Potassium currents. J. Exp. Bot. 50, 453–459.

    Article  Google Scholar 

  • Boyd, C.M., Gradmann, D., 1999c. Electrophysiology of the marine diatom Coscinodiscus wailesii. III. Uptake of nitrate and ammonium. J. Exp. Bot. 50, 461–467.

    Article  Google Scholar 

  • Briskin, D.P., 1990. The plasma membrane H+-ATPase of higher plant cells. Biochim. Biophys. Acta 2, 95–109.

    Google Scholar 

  • Brownlee, C., Wood, J.W., Briton, D., 1987. Cytoplasmic free calcium in single cells of centric diatoms. The use of Fura-2. Protoplasma 140, 118–122.

    Article  Google Scholar 

  • Gradmann, D., Blatt, M.R., Thiel, G., 1993. Electro coupling of ion transporters in plants. J. Membr. Biol. 136, 327–332.

    Google Scholar 

  • Gradmann, D., Boyd, C.M., 2000. Three types of membrane excitations in the marine diatom Coscinodiscus wailesii. J. Membr. Biol. 175, 149–160.

    Article  Google Scholar 

  • Kjelstrup, S., Rubi, J.M., Bedeaux, D., 2005. Active transport: a kinetic description based on thermodynamics grounds. J. Theor. Biol. 234(1), 7–12.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2005. Models of active transport of ions in biomembranes of various types of cells. J. Theor. Biol. 324, 403–412.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2006a. Requirements on models and models of active transport of ions in biomembranes. Bull. Math. Biol. 68, 385–399.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2006b. Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions. J. Theor. Biol. 242, 617–626.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2008. Early stages of the evolution of life: a cybernetic approach. Orig. Life Evol. Biosph. 38, 343–353.

    Article  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2009. Model of active transport of ions in archaea cells. Bull. Math. Biol. 71(2), 383–398.

    Article  MATH  MathSciNet  Google Scholar 

  • Melkikh, A.V., Sutormina, M.I., 2008. Model of active transport of ions in cardiac cell. J. Theor. Biol. 252, 247–254.

    Article  Google Scholar 

  • Ono, A., Tada, K., Ichimi, K., 2006. Chemical composition of Coscinodiscus wailesii and the implication for nutrient ratios in a coastal water, Seto Inland Sea, Japan. Mar. Pollut. Bull. 57, 94–102.

    Article  Google Scholar 

  • Oster, G.F., Perelson, A.S., Katchalsky, A., 1973. Network thermodynamics: dynamic modelling of biophysical systems. Q. Rev. Biophys. 6(1), 1–134.

    Article  Google Scholar 

  • Wagner, C.A., Finberg, K.E., Brenton, S., Marshansky, V., Brown, D., Geibel, J.P., 2004. Renal vacuolar H+-ATPase. Physiol. Rev. 84, 1263–1314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melkikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkikh, A.V., Bessarab, D.S. Model of Active Transport of Ions Through Diatom Cell Biomembrane. Bull. Math. Biol. 72, 1912–1924 (2010). https://doi.org/10.1007/s11538-010-9520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9520-9

Keywords

Navigation