Skip to main content
Log in

A Cell Model of the Ion-Exchange Membrane. Electrical Conductivity and Electroosmotic Permeability

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Electroosmotic permeability and specific electrical conductivity of an ion-exchange membrane have been calculated in terms of the thermodynamics of nonequilibrium processes on the basis of a cell model that was previously proposed for a charged membrane. The calculated parameters have been considered as kinetic coefficients of the Onsager matrix. The membrane has been considered to be an ordered set of porous spherical charged particles placed into spherical shells filled with a binary electrolyte solution. The boundary value problems have been analytically solved to determine the electroosmotic permeability and electrical conductivity of the membrane for the case of the Kuwabara boundary condition imposed on the cell surface. The consideration has been carried out within the framework of a small deviation of system parameters from their equilibrium values upon imposition of external fields. Different particular cases of the derived exact analytical equations, including those for a binary symmetric electrolyte and an ideally selective membrane, have been analyzed. It has been shown that, as electrolyte concentration increases, the specific electrical conductivity (direct kinetic coefficient) of a cation-exchange membrane may monotonically grow in different manners, i.e., with an inflection point in a plot (similarly to a current–voltage curve) or without it. The behavior of the electroosmotic permeability upon increasing electrolyte concentration depends on the deviation of the distribution coefficient of electrolyte molecules from unity and the difference between the diffusion coefficient ratios of different ions in a dilute solution and in the membrane: the permeability may monotonically grow, increase reaching a plateau, or pass through a maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Happel, D. and Brenner, G., Low Reynolds Number Hydrodynamics, Leyden: Noordhoff, 1965; Moscow: Mir, 1976.

  2. Filippov, A.N., Colloid J., 2018, vol. 80, p. 716.

  3. Shilov, V.N., Zharkikh, N.I., and Borkovskaya, Yu.B., Kolloidn. Zh., 1981, vol. 43, p. 540.

    CAS  Google Scholar 

  4. Zharkikh, N.I. and Borkovskaya, Yu.B., Kolloidn. Zh., 1981, vol. 43, p. 652.

    Google Scholar 

  5. Filippov, A.N. and Shkirskaya, S.A., Membr. Membr. Tekhnol., 2018, vol. 8, p. 254.

  6. Brinkman, H.C., Appl. Sci. Res. A1, 1947, p. 27.

    CAS  Google Scholar 

  7. Saffman, P.G., Stud. Appl. Math., 1971, vol. 50, p. 93.

    Article  Google Scholar 

  8. Starov, V.M. and Churaev, N.V., Adv. Colloid Interface Sci., 1993, vol. 43, p. 145.

    Article  CAS  PubMed  Google Scholar 

  9. Vasin, S.I. and Filippov, A.N., Colloid J., 2009, vol. 71, p. 31.

    Article  CAS  Google Scholar 

  10. Vasin, S.I., Filippov, A.N., and Starov, V.M., Adv. Colloid Interface Sci., 2008, vol. 139, p. 83.

    Article  CAS  PubMed  Google Scholar 

  11. Filippov, A., Afonin, D., Kononenko, N., Lvov, Y., and Vinokurov, V., Colloids Surf. A, 2017, vol. 521, p. 251.

    Article  CAS  Google Scholar 

  12. Filippov, A., Petrova, D., Falina, I., Kononenko, N., Ivanov, E., Lvov, Y., and Vinokurov, V., Polymers, 2018, vol. 10, Article no. 366.

    Article  CAS  PubMed Central  Google Scholar 

  13. Sidorova, M.P., Ermakova, L.E., Savina, I.A., and Fridrikhsberg, D.A., J. Membr. Sci., 1993, vol. 79, p. 159.

    Article  CAS  Google Scholar 

  14. Pismenskaya, N., Nikonenko, V., Sarapulova, V., Shkorkina, I., Titorova, V., Butylskii, D., and Tongwen Xu, Abstracts of Papers, Conf. on Ion Transport in Organic and Inorganic Membranes, Sochi, 2017, p. 21.

    Google Scholar 

  15. Zholkovskiy, E.K., Shilov, V.N., Masliyah, J.H., and Bondarenko, M.P., Can. J. Chem. Eng., 2007, vol. 85, p. 701.

    Article  CAS  Google Scholar 

  16. Moelwyn-Hughes, E.A., Physical Chemistry, London: Pergamon, 1961, vol. 2.

    Google Scholar 

  17. Borkovskaya, Yu.B., Zharkikh, N.I., and Dudkina, L.M., Kolloidn. Zh., 1982, vol. 44, p. 645.

    CAS  Google Scholar 

  18. Zharkikh, N.I. and Shilov, V.N., Kolloidn. Zh., 1981, vol. 43, p. 1061.

    CAS  Google Scholar 

  19. Nikonenko, V.V., Mareev S.A., Pis'menskaya, N.D., Uzdenova, A.M., Kovalenko, A.V., Urtenov, M.Kh., and Pourcelly, G., Russian J. of Electrochemistry, 2017, vol. 53, p. 1122.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 17-08-01287) (theoretical part) and the Ministry of Education and Science of the Russian Federation (project no. 14.Z50.31.0035) (experimental data processing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Filippov.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.N. A Cell Model of the Ion-Exchange Membrane. Electrical Conductivity and Electroosmotic Permeability. Colloid J 80, 728–738 (2018). https://doi.org/10.1134/S1061933X18060042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18060042

Navigation