Skip to main content
Log in

Multistability in a Model for CTL Response to HTLV-I Infection and Its Implications to HAM/TSP Development and Prevention

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Human T-cell leukaemia/lymphoma virus type I (HTLV-I) is a retrovirus that has been identified as the causative agent of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other illnesses. HTLV-I infects primarily CD4+ T cells and the transmission occurs through direct cell-to-cell contact. HAM/TSP patients harbor higher proviral loads in peripheral blood lymphocytes than asymptomatic carriers. Also, HAM/TSP patients exhibit a remarkably high number of circulating HTLV-I-specific CD8+ cytotoxic T lymphocytes (CTLs) in the peripheral blood. While CTLs have a protective role by killing the infected cells and lowering the proviral load, a high level of CTLs and their cytotoxicity are believed to be a main cause of the development of HAM/TSP. A mathematical model for HTLV-I infection of CD4+ T cells that incorporates the CD8+ cytotoxic T-cell (CTL) response is investigated. Our mathematical analysis reveals that the system can stabilize at a carrier steady-state with persistent viral infection but no CTL response, or at a HAM/TSP steady-state at which both the viral infection and CTL response are persistent. We also establish two threshold parameters R 0 and R 1, the basic reproduction numbers for viral persistence and for CTL response, respectively. We show that the parameter R 1 can be used to distinguish asymptomatic carriers from HAM/TSP patients, and as an important control parameter for preventing the development of HAM/TSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asquit, B., Bangham, C.R.M., 2007. Quantifying HTLV-I dynamics. Immunol. Cell Biol. 85, 280–286.

    Article  Google Scholar 

  • Bangham, C.M.R., 2000. The immune response to HTLV-I. Curr. Opin. Immunol. 12, 397–402.

    Article  Google Scholar 

  • Bangham, C.R., Meekings, K., Toulza, F., Nejmeddine, M., Majorovits, E., Asquith, B., Taylor, G.P., 2009. The immune control of HTLV-1 infection: selection forces and dynamics. Front. Biosci. 14, 2889–2903.

    Article  Google Scholar 

  • Cann, A.J., Chen, I.S.Y., 1996. Human T-cell leukemia virus type I and II. In: Fields, B.N., Knipe, D.M., Howley, P.M. (Eds.), Fields Virology, pp. 1849–1880. Lippincott-Raven Publishers.

  • Clark, D.R., De Boer, R.J., Wolthers, K.C., Miedema, F., 1999. T cell dynamics in HIV-1 infection. In: Dixon, F.J. (Ed.), Advances in Immunology, pp. 301–327. Academic Press, San Diego.

    Google Scholar 

  • Elovaara, I., Koenig, S., Brewah, A.Y., Woods, R.M., Lehky, T., Jacobson, S., 1993. High human T cell lymphotropic virus type 1 (HTLV-1)-specific precursor cytotoxic T lymphocyte frequencies in patients with HTLV-1-associated neurological disease. J. Exp. Med. 177, 1567–1573.

    Article  Google Scholar 

  • Gessain, A., Barin, F., Vernant, J.C., Gout, O., Maurs, L., Calender, A., de Thé, G., 1985. Antibodies to human T-lymphotropic virus type-I in patient with tropical spastic paraparesis. Lancet 2, 407–410.

    Article  Google Scholar 

  • Gómez-Acevedo, H., Li, M.Y., 2005. Backward bifurcation in a model for HTLV-I infection of CD4+ T cells. Bull. Math. Biol. 67, 101–114.

    Article  MathSciNet  Google Scholar 

  • Greten, T.F., Slansky, J.E., Kubota, R., Soldan, S.S., Jaffee, E.M., Liest, T.P., Paradoll, D.M., Jacobson, S., Schneck, J.P., 1998. Direct visualization of antigen-specific T cells: HTLV-I Tax 11-19-specific CD8+ cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc. Natl. Acad. Sci. USA 95, 7568–7573.

    Article  Google Scholar 

  • Igakura, T., Stinchcombe, J.C., Goon, P.K.C., Taylor, G.P., Weber, J.N., Griffiths, G.M., Tanaka, Y., Osame, M., Bangham, C.R.M., 2003. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleto. Science 299, 1713–1716.

    Article  Google Scholar 

  • Jacobson, S., 2002. Immunopathogenesis of HTLV-I associated neurological disease. J. Infect. Dis. 186, 187–192.

    Article  Google Scholar 

  • Kaplan, J.E., Osame, M., Kubota, H., et al., 1990. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 3, 1096–1101.

    Google Scholar 

  • Kira, J., Koyanagi, Y., Yamada, T., et al., 1991. Increased HTLV-I proviral DNA in HTLV-I associated myelopathy: a quantitative polymerase chain reaction study. Ann. Neurol. 29, 194–201.

    Article  Google Scholar 

  • Koenig, S., Woods, R.M., Brewah, Y.A., Newell, A.J., Jones, G.M., Boone, E., Adelsbergern, J.W., Baseler, M.W., Robinson, S.M., Jacobson, S., 1993. Characterization of MHC class I restricted cytotoxic T cell responses to tax in HTLV-1 infected patients with neurologic disease. J. Immunol. 151, 3874–3883.

    Google Scholar 

  • Kubota, R., Fujiyoshi, T., Izumo, S., et al., 1993. Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy. J. Neuroimmunol. 42, 147–154.

    Article  Google Scholar 

  • Kubota, R., Osame, M., Jacobson, S., 2000. Retrovirus: Human T-cell lymphotropic virus type I-associated diseases and immune dysfunction. In: Cunningham, M.W., Fujinami, R.S. (Eds.), Effects of Microbes on the Immune System, pp. 349–371. Lippincott Williams & Wilkins.

  • LaSalle, J.P., 1976. The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Macchi, B., Faraoni, I., Zhang, J., Grelli, S., Favalli, C., Mastino, A., Bonmassar, E., 1997. AZT inhibits the transmission of human T-cell leukaemia/lymphoma virus type I to adult peripheral blood mononuclear cells in vitro. J. Gen. Virol. 78, 1007–1016.

    Google Scholar 

  • Manns, A., Murphy, E.L., Wilk, R., Haynes, G., Figueroa, J.P., Hanchard, B., Barnett, M., Drummond, J., Waters, D., Cerney, M., Seals, J.R., Alexander, S.S., Lee, H., Blattner, W.A., 1991. Detection of early human T-cell lymphotropic virus type I antibody patterns during seroconversion among transfusion recipients. Blood 77, 896–905.

    Google Scholar 

  • Mansky, L.M., 2000. In vivo analysis of human T-cell leukemia virus type 1 reverse transcription accuracy. J. Virol. 74, 9525–9531.

    Article  Google Scholar 

  • Mortreux, F., Kazanji, M., Gabet, A.-S., de Thoisy, B., Wattel, E., 2001. Two-step nature of human T-cell leukemia virus type 1 replication in experimentally infected squirrel monkeys (saimiri sciureus). J. Virol. 75, 1083–1089.

    Article  Google Scholar 

  • Mosley, A.J., Asquith, B., Bangham, C.R.M., 2005. Cell-mediated immune response to human T-lymphotropic virus type I. Viral Immun. 18, 293–305.

    Article  Google Scholar 

  • Nagai, M., Yamano, Y., Brennan, M.B., Mora, C.A., Jacobson, S., 2001. Increased HTLV-I proviral load and preferential expansion of HTLV-I Tax-specific CD8+ T cells in cerebrospinal fluid from patients with HAM/TSP. Ann. Neurol. 50, 807–812.

    Article  Google Scholar 

  • Nelson, P.W., Murray, J.D., Perelson, A.S., 2000. A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215.

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74–79.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M., 2000. Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, London.

    MATH  Google Scholar 

  • Okochi, K., Sato, H., Hinuma, Y., 1984. A retrospective study on transmission of adult T-cell leukemia virus by blood transfusion: seroconversion in recipients. Vox Sang. 46, 245–253.

    Article  Google Scholar 

  • Osame, M., Usuku, K., Izumo, S., Ijichi, N., Aminati, H., Igata, A., Matsumoto, M., Tara, M., 1986. HTLV-I-associated myelopathy: a new clinical entity. Lancet 1, 1031–1032.

    Article  Google Scholar 

  • Parker, C.E., Daenke, S., Nightingale, S., Bangham, C.R.M., 1992. Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis. Virology 188, 628–636.

    Article  Google Scholar 

  • Perelson, A.S., 1989. Modeling the interaction of the immune system with HIV. In: Castillo-Chávez, C. (Ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, vol. 83, pp. 350–370. Springer, Berlin.

    Google Scholar 

  • Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev. 41, 3–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Richardson, J.H., Edwards, A.J., Cruickshank, J.K., Rudge, P., Dalgleish, A.G., 1990. In vivo cellular tropism of human T-cell leukemia virus type 1. J. Virol. 64, 5682–5687.

    Google Scholar 

  • Shiraki, H., Sagara, Y., Inoue, Y., 2003. Cell-to-cell transmission of HTLV-I. In: Sugamura, K., Uchiyam, T., Matsuoka, M., Kannagi, M. (Eds.), Two Decades of Adult T-cell Leukemia and HTLV-I Research, pp. 303–316. Japan Scientific Societies, Tokyo.

    Google Scholar 

  • Wodarz, D., Nowak, M.A., Bangham, C.R.M., 1999. The dynamics of HTLV-I and the CTL response. Immunol. Today 20, 220–227.

    Article  Google Scholar 

  • Yamano, Y., Nagai, M., Brennan, M., Mora, C.A., Soldan, S.S., Tomaru, U., Takenouchi, N., Izumo, S., Osame, M., Jacobson, S., 2002. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99, 88–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Acevedo, H., Li, M.Y. & Jacobson, S. Multistability in a Model for CTL Response to HTLV-I Infection and Its Implications to HAM/TSP Development and Prevention. Bull. Math. Biol. 72, 681–696 (2010). https://doi.org/10.1007/s11538-009-9465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9465-z

Keywords

Navigation