Skip to main content

Advertisement

Log in

Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Watzl C (2014) How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv Immunol 124:137–170

    Article  PubMed  Google Scholar 

  2. Bangham CR (2009) CTL quality and the control of human retroviral infections. Eur J Immunol 39(7):1700–1712

    Article  CAS  PubMed  Google Scholar 

  3. Moles R et al (2022) NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 18(4):e1010416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vivier E et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seaman WE (2000) Natural killer cells and natural killer T cells. Arthritis Rheum 43(6):1204–1217

    Article  CAS  PubMed  Google Scholar 

  6. Queiroz GAN et al (2019) Functional capacity of natural killer cells in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. BMC Infect Dis 19(1):433

    Article  PubMed  PubMed Central  Google Scholar 

  7. Watzl C, Long EO (2010) Signal transduction during activation and inhibition of natural killer cells. Curr Protoc Immunol 90(1):11.9 B. 1-11.9 B. 17

    Article  Google Scholar 

  8. Moretta A et al (1996) Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 14:619–648

    Article  CAS  PubMed  Google Scholar 

  9. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9(8):568–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caligiuri MA (2008) Human natural killer cells. Blood J Am Soc Hematol 112(3):461–469

    CAS  Google Scholar 

  11. Thiery J et al (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 12(8):770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallin RP et al (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735

    Article  CAS  PubMed  Google Scholar 

  13. Kayagaki N et al (1999) Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163(4):1906–1913

    Article  CAS  PubMed  Google Scholar 

  14. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  CAS  PubMed  Google Scholar 

  15. Khalesi Z et al (2023) Association between human herpesviruses and multiple sclerosis: a systematic review and meta-analysis. Microb Pathog 177:106031

  16. Ghorbani S et al (2022) Association between human herpesvirus-6 and primary brain tumors: a systematic review and meta-analysis. Futur Virol 17(5):305–314

    Article  CAS  Google Scholar 

  17. Maskouni EJ et al (2023) Association between Epstein-Bar virus and colorectal cancer: A systematic review and meta-analysis. Microb Pathog 179:106087

  18. Uchiyama T et al (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases

  19. Gessain A, de The G et al (1985) Antibodies to human T-lymphotropic virus I in patients with tropical spastic paraparesis. Lancet ii:407–410

    Article  Google Scholar 

  20. Osame M et al (1986) HTLV-1 associated myelopathy. A new clinical entity. Lancet 1(8488):1031–1032

  21. Kamoi K, Mochizuki M (2012) HTLV-1 uveitis. Front Microbiol 3:270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Einsiedel L et al (2012) Bronchiectasis is associated with human T-lymphotropic virus 1 infection in an Indigenous Australian population. Clin Infect Dis 54(1):43–50

    Article  PubMed  Google Scholar 

  23. Letafati A et al (2023) Therapeutic approaches for HTLV-1-associated adult T-cell leukemia/lymphoma: a comprehensive review. Med Oncol 40(10):295

    Article  CAS  PubMed  Google Scholar 

  24. Willems L et al (2017) Reducing the global burden of HTLV-1 infection: an agenda for research and action. Antiviral Res 137:41–48

    Article  CAS  PubMed  Google Scholar 

  25. Sato T et al (2018) Mogamulizumab (Anti-CCR4) in HTLV-1–associated myelopathy. N Engl J Med 378(6):529–538

    Article  CAS  PubMed  Google Scholar 

  26. Richardson JH et al (1990) In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol 64(11):5682–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanon E et al (2000) Fratricide among CD8(+) T lymphocytes naturally infected with human T cell lymphotropic virus type I. Immunity 13(5):657–664

    Article  CAS  PubMed  Google Scholar 

  28. Nagai M et al (2001) CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 98(6):1858–1861

    Article  CAS  PubMed  Google Scholar 

  29. Macatonia SE et al (1992) Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation. AIDS Res Hum Retrovir 8(9):1699–1706

    Article  CAS  PubMed  Google Scholar 

  30. Makino M et al (1999) The role of human T-lymphotropic virus type 1 (HTLV-1)-infected dendritic cells in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis. J Virol 73(6):4575–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Journo C, Mahieux R (2011) HTLV-1 and innate immunity. Viruses 3(8):1374–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Puccioni-Sohler M et al (2003) Pathological and virological assessment of acute HTLV-I-associated myelopathy complicated with encephalopathy and systemic inflammation. J Neurol Sci 207(1–2):87–93

    Article  PubMed  Google Scholar 

  33. Sakai JA et al (2001) In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells. Blood 98(5):1506–1511

    Article  CAS  PubMed  Google Scholar 

  34. Soldan SS, Jacobson S (2001) Immune response to HTLV-I and HTLV-II. Retroviral Immunology. Springer, pp 159–190

    Chapter  Google Scholar 

  35. Yao J, Wigdahl B (2000) Human T cell lymphotropic virus type I genomic expression and impact on intracellular signaling pathways during neurodegenerative disease and leukemia. Front Biosci 5:D138–D168

    Article  CAS  PubMed  Google Scholar 

  36. Tashiro T et al (1992) Immunological studies on opportunistic infection and the development of adult T-cell leukemia. Intern Med 31(9):1132–1136

    Article  CAS  PubMed  Google Scholar 

  37. Inagaki A et al (2006) Clinical significance of serum Th1-, Th2-and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and-10 levels are significant unfavorable prognostic factors. Int J Cancer 118(12):3054–3061

    Article  CAS  PubMed  Google Scholar 

  38. Kagdi H et al (2018) Switching and loss of cellular cytokine producing capacity characterize in vivo viral infection and malignant transformation in human T-lymphotropic virus type 1 infection. PLoS Pathog 14(2):e1006861

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takamori A et al (2011) Functional impairment of Tax-specific but not cytomegalovirus-specific CD8+ T lymphocytes in a minor population of asymptomatic human T-cell leukemia virus type 1-carriers. Retrovirology 8(1):1–15

    Article  ADS  Google Scholar 

  40. Kannagi M et al (2019) Impact of host immunity on HTLV-1 pathogenesis: potential of Tax-targeted immunotherapy against ATL. Retrovirology 16(1):1–14

    Article  CAS  Google Scholar 

  41. Yoshida M et al (1989) Increased replication of HTLV-I in HTLV-I–associated myelopathy. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 26(3):331–335

    Article  CAS  Google Scholar 

  42. Kira Ji et al (1991) Increased HTLV-I proviral DNA in HTLV-I–associated myelopathy: A quantitative polymerase chain reaction study. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 29(2):194–201

    Article  CAS  Google Scholar 

  43. Iwanaga M et al (2010) Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood 116(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  44. Yu F et al (1991) Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesis—decrease in NK cell subset populations and activity in HTLV-I seropositive individuals. J Neuroimmunol 33(2):121–128

    Article  CAS  PubMed  Google Scholar 

  45. Bangham CR, Osame M (2005) Cellular immune response to HTLV-1. Oncogene 24(39):6035–6046

    Article  CAS  PubMed  Google Scholar 

  46. Parker CE et al (1992) Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis. Virology 188(2):628–636

    Article  CAS  PubMed  Google Scholar 

  47. Amorim CF et al (2019) The role of NK cells in the control of viral infection in HTLV-1 carriers. J Immunol Res 6574828

  48. Stewart SA et al (1996) HTLV-1 gene expression in adult T-cell leukemia cells elicits an NK cell response in vitro and correlates with cell rejection in SCID mice. Virology 226(2):167–175

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  49. Banerjee P, Feuer G, Barker E (2007) Human T-cell leukemia virus type 1 (HTLV-1) p12I down-modulates ICAM-1 and-2 and reduces adherence of natural killer cells, thereby protecting HTLV-1-infected primary CD4+ T cells from autologous natural killer cell-mediated cytotoxicity despite the reduction of major histocompatibility complex class I molecules on infected cells. J Virol 81(18):9707–9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sonoda S et al (1987) Altered HLA antigens expressed on T and B lymphocytes of adult T-cell leukemia/lymphoma patients and their relatives. Int J Cancer 40(5):629–634

    Article  CAS  PubMed  Google Scholar 

  51. Ohashi T et al (2002) Correlation of major histocompatibility complex class I downregulation with resistance of human T-cell leukemia virus type 1-infected T cells to cytotoxic T-lymphocyte killing in a rat model. J Virol 76(14):7010–7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson JM et al (2001) Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12(I) protein. J Virol 75(13):6086–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kärre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55(3):221–228

    Article  PubMed  Google Scholar 

  54. Braud V, Tomasec P, Wilkinson GWG (2002) Viral evasion of natural killer cells during human cytomegalovirus infection. Viral Proteins Counteracting Host Defenses. Springer, pp 117–129

    Chapter  Google Scholar 

  55. Jost S, Altfeld M (2012) Evasion from NK cell-mediated immune responses by HIV-1. Microbes Infect 14(11):904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Urlaub D et al (2017) LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J Immunol 198(5):1944–1951

    Article  CAS  PubMed  Google Scholar 

  57. Moretta A et al (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19(1):197–223

    Article  CAS  PubMed  Google Scholar 

  58. Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23(2):255–259

    Article  CAS  PubMed  Google Scholar 

  59. Bottino C et al (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukudome K et al (1992) Strong induction of ICAM-1 in human T cells transformed by human T-cell-leukemia virus type 1 and depression of ICAM-1 or LFA-1 in adult T-cell-leukemia-derived cell lines. Int J Cancer 52(3):418–427

    Article  CAS  PubMed  Google Scholar 

  61. Sawada M et al (1990) Human T-cell leukemia virus type I trans activator induces class I major histocompatibility complex antigen expression in glial cells. J Virol 64(8):4002–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Owen SM et al (1997) Transcriptional activation of the intercellular adhesion molecule 1 (CD54) gene by human T lymphotropic virus types I and II Tax is mediated through a palindromic response element. AIDS Res Hum Retrovir 13(16):1429–1437

    Article  CAS  PubMed  Google Scholar 

  63. Yoshimura N et al (1988) Killer cell systems of cynomolgus monkeys experimentally infected with HTLV-1. J Immunol 141(6):1970–1974

    Article  CAS  PubMed  Google Scholar 

  64. McGinn TM et al (2004) Immune responses to HTLV-I (ACH) during acute infection of pig-tailed macaques. AIDS Res Hum Retrovir 20(4):443–456

    Article  CAS  PubMed  Google Scholar 

  65. Fujihara K (1999) Pathogenetic significance of HTLV-I infection and immune surveillance in HAM. Rinsho Shinkeigaku 39(1):21–23

    MathSciNet  CAS  PubMed  Google Scholar 

  66. De Vecchis L et al (1985) Decline of natural cytotoxicity of human lymphocytes following infection with human T-cell leukemia/lymphoma virus (HTLV). Leuk Res 9(3):349–355

    Article  PubMed  Google Scholar 

  67. Lo KM et al (1992) Infection of human natural killer (NK) cells with replication-defective human T cell leukemia virus type I provirus. Increased proliferative capacity and prolonged survival of functionally competent NK cells. J Immunol 149(12):4101–8

    Article  CAS  PubMed  Google Scholar 

  68. Brito-Melo GE et al (2002) Phenotypic study of peripheral blood leucocytes in HTLV-I-infected individuals from Minas Gerais. Brazil Scand J Immunol 55(6):621–628

    Article  CAS  PubMed  Google Scholar 

  69. Fujihara K et al (1991) Cellular immune surveillance against HTLV-I infected T lymphocytes in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). J Neurol Sci 105(1):99–107

    Article  CAS  PubMed  Google Scholar 

  70. Wu X-M et al (2000) Flow cytometric differentiation of Asian and Western types of multiple sclerosis, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and hyperIgEaemic myelitis by analyses of memory CD4 positive T cell subsets and NK cell subsets. J Neurol Sci 177(1):24–31

    Article  CAS  PubMed  Google Scholar 

  71. Masuda A et al (2000) Psychobehavioral and immunological characteristics of HTLV-1 carriers and non-carriers with persistently low natural killer cell activity. Intern Med 39(11):885–890

    Article  CAS  PubMed  Google Scholar 

  72. Azakami K et al (2009) Severe loss of invariant NKT cells exhibiting anti-HTLV-1 activity in patients with HTLV-1-associated disorders. Blood 114(15):3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  74. Braud VM et al (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391(6669):795–799

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Saito M et al (2003) Low frequency of CD94/NKG2A+ T lymphocytes in patients with HTLV-1–associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers. Blood 102(2):577–584

    Article  CAS  PubMed  Google Scholar 

  76. Matsuzaki T et al (2005) A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis. J Neurol Sci 237(1–2):75–81

    Article  ADS  PubMed  Google Scholar 

  77. Vine AM et al (2004) The role of CTLs in persistent viral infection: cytolytic gene expression in CD8+ lymphocytes distinguishes between individuals with a high or low proviral load of human T cell lymphotropic virus type 1. J Immunol 173(8):5121–5129

    Article  CAS  PubMed  Google Scholar 

  78. Groh V et al (2001) Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2(3):255–260

    Article  CAS  PubMed  Google Scholar 

  79. Sutherland CL et al (2002) UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 168(2):671–679

    Article  CAS  PubMed  Google Scholar 

  80. Cosman D et al (2001) ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14(2):123–133

    Article  CAS  PubMed  Google Scholar 

  81. Tanaka Y et al (2014) Elimination of human T cell leukemia virus type-1-infected cells by neutralizing and antibody-dependent cellular cytotoxicity-inducing antibodies against human t cell leukemia virus type-1 envelope gp46. AIDS Res Hum Retrovir 30(6):542–552

    Article  CAS  PubMed  Google Scholar 

  82. Fujihara K et al (1996) Antibody-dependent cell-mediated cytotoxicity (ADCC) in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). J Neurol Sci 142(1–2):65–69

    Article  CAS  PubMed  Google Scholar 

  83. Miyakoshi H, Koide H, Aoki T (1984) In vitro antibody-dependent cellular cytotoxicity against human T-cell leukemia/lymphoma virus (HTLV)-producing cells. Int J Cancer 33(3):287–291

    Article  CAS  PubMed  Google Scholar 

  84. Kunitomi T et al (1990) Antibody-dependent cellular cytotoxicity and natural killer activity against HTLV-1 infected cells. Pediatr Int 32(1):16–19

    Article  CAS  Google Scholar 

  85. Manel N et al (2005) HTLV-1 tropism and envelope receptor. Oncogene 24(39):6016–6025

    Article  CAS  PubMed  Google Scholar 

  86. Kitajima I et al (1988) Immunological studies of HTLV-I associated myelopathy. Autoimmunity 1(2):125–131

    Article  CAS  PubMed  Google Scholar 

  87. Bisio F et al (2013) Successfully treated HIV-infected patients have differential expression of NK cell receptors (NKp46 and NKp30) according to AIDS status at presentation. Immunol Lett 152(1):16–24

    Article  CAS  PubMed  Google Scholar 

  88. Coutinho R et al (2014) Human T lymphotropic virus type 1 (HTLV-1) proviral load induces activation of T-lymphocytes in asymptomatic carriers. BMC Infect Dis 14(1):453

    Article  PubMed  PubMed Central  Google Scholar 

  89. Santos SB et al (2004) Exacerbated inflammatory cellular immune response characteristics of HAM/TSP is observed in a large proportion of HTLV-I asymptomatic carriers. BMC Infect Dis 4(1):1–8

    Article  Google Scholar 

  90. Norris PJ et al (2010) Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells. Virulence 1(1):19–28

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y et al (2007) In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121(2):258–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hanon E et al (2000) Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood J Am Soc Hematol 95(4):1386–1392

    CAS  Google Scholar 

  93. Zhang B-N et al (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186(10):1677–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th 2 bias of natural killer T cells. Nature 413(6855):531–534

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Antel JP et al (1998) Non-MHC-restricted cell-mediated lysis of human oligodendrocytes in vitro: relation with CD56 expression. J Immunol 160(4):1606–1611

    Article  CAS  PubMed  Google Scholar 

  96. Feng J et al (2003) Interferon-α significantly reduces cerebrospinal fluid CD4 cell subsets in HAM/TSP. J Neuroimmunol 141(1–2):170–173

    Article  CAS  PubMed  Google Scholar 

  97. Izumo S et al (1996) Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology 46(4):1016–1021

    Article  CAS  PubMed  Google Scholar 

  98. Umehara F et al (1994) Cytokine expression in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 53(1):72–77

    Article  CAS  PubMed  Google Scholar 

  99. Umehara F et al (1993) Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol 52(4):424–430

    Article  CAS  PubMed  Google Scholar 

  100. Feuer G et al (1995) Potential role of natural killer cells in controlling tumorigenesis by human T-cell leukemia viruses. J Virol 69(2):1328–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dorshkind K et al (1985) Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol 134(6):3798–3801

    Article  CAS  PubMed  Google Scholar 

  102. Ishihara S et al (1992) Successful graft of HTLV-I-transformed human T-cells (MT-2) in severe combined immunodeficiency mice treated with anti-asialo GM-1 antibody. Jpn J Cancer Res 83(4):320–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kondo A et al (1993) A model of in vivo cell proliferation of adult T-cell leukemia 82(8):2501–2509

  104. Richard V et al (2001) Humoral hypercalcemia of malignancy: severe combined immunodeficient/beige mouse model of adult T-cell lymphoma independent of human T-cell lymphotropic virus type-1 tax expression. Am J Pathol 158(6):2219–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu Y et al (2002) Engraftment and tumorigenesis of HTLV-1 transformed T cell lines in SCID/bg and NOD/SCID mice. Leuk Res 26(6):561–567

    Article  PubMed  Google Scholar 

  106. Tan C, Waldmann TA (2002) Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Can Res 62(4):1083–1086

    CAS  Google Scholar 

  107. Dewan MZ et al (2003) Rapid tumor formation of human T-cell leukemia virus type 1-infected cell lines in novel NOD-SCID/γcnull mice: suppression by an inhibitor against NF-κB. J Virol 77(9):5286–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ohsugi T et al (2004) Rapid tumor death model for evaluation of new therapeutic agents for adult T-cell leukemia. Lab Invest 84(2):263–266

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  109. Ohsugi T et al (1994) Engraftment of HTLV-I-transformed human T-cell line into SCID mice with NK cell function. J Vet Med Sci 56(3):601–603

    Article  CAS  PubMed  Google Scholar 

  110. Feuer G et al (1993) Establishment of human T-cell leukemia virus type I T-cell lymphomas in severe combined immunodeficient mice. Blood 82(3):722–731

    Article  CAS  PubMed  Google Scholar 

  111. Kiessling R et al (1977) Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol 7(9):655–663

    Article  CAS  PubMed  Google Scholar 

  112. Pflumio F et al (1993) Engraftment of human lymphoid cells into newborn SCID mice leads to graft-versus-host disease. Int Immunol 5(12):1509–1522

    Article  CAS  PubMed  Google Scholar 

  113. Franchini G, Wong-Staal F, Gallo RC (1984) Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci 81(19):6207–6211

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshida M et al (1984) Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci 81(8):2534–2537

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Uno H et al (1995) Altered expression of class I HLA antigen on peripheral mononuclear cells in patients with adult T-cell leukemia: inverse relationship with natural killer susceptibility. Cancer Epidemiol Biomarkers Prev 4(4):367–372

    MathSciNet  CAS  PubMed  Google Scholar 

  116. Hashiguchi T et al (2002) Adult T-cell leukemia (ATL) cells which express neural cell adhesion molecule (NCAM) and infiltrate into the central nervous system. Intern Med 41(1):34–38

    Article  PubMed  Google Scholar 

  117. Hayashi K et al (1994) A case of neural cell adhesion molecule-positive peripheral T-cell lymphoma associated with human T-cell lymphotrophic virus type 1 showing an unusual involvement of the gastrointestinal tract during the course of the disease. Hum Pathol 25(11):1251–1253

    Article  CAS  PubMed  Google Scholar 

  118. Koike M et al (2000) CD56-positive adult T-cell leukemia manifested by abnormal lung shadows. [Rinsho Ketsueki] Jpn J Clin Hematol 41(1):32–36

    CAS  Google Scholar 

  119. Ohshima K et al (1999) Absence of cytotoxic molecules in CD8-and/or CD56-positive adult T-cell leukaemia/lymphoma. Virchows Arch 435(2):101–104

    Article  CAS  PubMed  Google Scholar 

  120. Sugimoto K-J et al (2015) CD56-positive adult T-cell leukemia/lymphoma: a case report and a review of the literature. Med Mol Morphol 48(1):54–59

    Article  PubMed  Google Scholar 

  121. Karube K et al (2008) Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int 58(2):89–97

    Article  PubMed  Google Scholar 

  122. Decker T et al (2002) IFNs and STATs in innate immunity to microorganisms. J Clin Investig 109(10):1271–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kovacic B et al (2006) STAT1 acts as a tumor promoter for leukemia development. Cancer Cell 10(1):77–87

    Article  CAS  PubMed  Google Scholar 

  124. Moles R, Bellon M, Nicot C (2015) STAT1: a novel target of miR-150 and miR-223 is involved in the proliferation of HTLV-I–transformed and ATL cells. Neoplasia 17(5):449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Charoenthongtrakul S et al (2011) Human T cell leukemia virus type 1 Tax inhibits innate antiviral signaling via NF-κB-dependent induction of SOCS1. J Virol 85(14):6955–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ko NL et al (2013) PA28γ is a novel corepressor of HTLV-1 replication and controls viral latency. Blood J Am Soc Hematol 121(5):791–800

    CAS  Google Scholar 

  127. Fang Y et al (2013) MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS one 8(6):e66915

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. O’Connor GM et al (2012) In contrast to HIV, KIR3DS1 does not influence outcome in HTLV-1 retroviral infection. Hum Immunol 73(8):783–787

    Article  PubMed  PubMed Central  Google Scholar 

  129. Martin MP et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31(4):429–434

    Article  CAS  PubMed  Google Scholar 

  130. Khakoo SI et al (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685):872–874

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Al Basatena N-KS et al (2011) KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 7(10):e1002270

    Article  Google Scholar 

  132. Seich Al Basatena NK et al (2011) KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 7(10):e1002270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cook LB et al (2013) HTLV-1: persistence and pathogenesis. Virology 435(1):131–140

    Article  CAS  PubMed  Google Scholar 

  134. Young NT et al (2001) Differential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J Immunol 166(6):3933–3941

    Article  CAS  PubMed  Google Scholar 

  135. Cerboni C et al (2007) Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood 110(2):606–615

    Article  CAS  PubMed  Google Scholar 

  136. Soderquest K et al (2011) Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 186(6):3304–3308

    Article  CAS  PubMed  Google Scholar 

  137. Rauch D et al (2009) Imaging spontaneous tumorigenesis: inflammation precedes development of peripheral NK tumors. Blood J Am Soc Hematol 113(7):1493–1500

    CAS  Google Scholar 

  138. Lanier LL, Chang C, Phillips JH (1994) Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 153(6):2417–28

    Article  CAS  PubMed  Google Scholar 

  139. Prussin C, Foster B (1997) TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol 159(12):5862–5870

    Article  CAS  PubMed  Google Scholar 

  140. Porcelli S et al (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178(1):1–16

    Article  CAS  PubMed  Google Scholar 

  141. Dellabona P et al (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med 180(3):1171–1176

    Article  CAS  PubMed  Google Scholar 

  142. Exley MA et al (2008) Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR alpha-chain CDR3 loop. Eur J Immunol 38(6):1756–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Metelitsa LS et al (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167(6):3114–3122

    Article  CAS  PubMed  Google Scholar 

  144. Kawano T et al (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 59(20):5102–5105

    CAS  PubMed  Google Scholar 

  145. Van Kaer L, Parekh VV, Wu L (2015) The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products. Front Immunol 6:226

    PubMed  PubMed Central  Google Scholar 

  146. Cerundolo V et al (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9(1):28–38

    Article  CAS  PubMed  Google Scholar 

  147. Ndhlovu L et al (2009) Lower numbers of circulating natural killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease. Clin Exp Immunol 158(3):294–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Borst J et al (1987) A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325(6106):683–688

    Article  ADS  CAS  PubMed  Google Scholar 

  149. Gumperz JE et al (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195(5):625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee PT et al (2002) Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195(5):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Coelho-dos-Reis JG et al (2013) Immunological profile of HTLV-1-infected patients associated with infectious or autoimmune dermatological disorders. PLoS Negl Trop Dis 7(7):e2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bittencourt AL, Oliveira MdFPd (2010) Cutaneous manifestations associated with HTLV-1 infection. Int J Dermatol 49(10):1099–1110

    Article  PubMed  Google Scholar 

  153. McGill NK et al (2012) HTLV-1-associated infective dermatitis: updates on the pathogenesis. Exp Dermatol 21(11):815–821

    Article  CAS  PubMed  Google Scholar 

  154. Imashuku S et al (2014) Expansion of natural killer cells in peripheral blood in a Japanese elderly with human T-cell lymphotropic virus type 1-related skin lesions. Case Rep Dermatol Med 2014:937513

  155. Inoue Y et al (1994) A case of HTLV-1 carrier associated with pulmonary cryptococcosis and thymoma. Nihon Kyobu Shikkan Gakkai Zasshi 32(8):778–784

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the vice Chancellor for research of Mashhad University of Medical Sciences, Mashhad, Iran, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Houshang Rafatpanah and Maryam Mahdifar contributed to the study conception, design, and data collection. Houshang Rafatpanah and Maryam Mahdifar wrote the first draft of the manuscript, and all authors commented on previous versions. All authors approved the final manuscript.

Corresponding author

Correspondence to Houshang Rafatpanah.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdifar, M., Boostani, R., Taylor, G.P. et al. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03999-8

Keywords

Navigation