Skip to main content

Advertisement

Log in

On the Modelling of Biological Patterns with Mechanochemical Models: Insights from Analysis and Computation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise to higher level structure. Given cells respond to mechanical stimuli, it is therefore important to consider the effects of these responses within biological self-organisation models. Here, we consider the self-organisation properties of a mechanochemical model previously developed by three of the authors in Acta Biomater. 4, 613–621 (2008), which is capable of reproducing the behaviour of a population of cells cultured on an elastic substrate in response to a variety of stimuli. In particular, we examine the conditions under which stable spatial patterns can emerge with this model, focusing on the influence of mechanical stimuli and the interplay of non-local phenomena. To this end, we have performed a linear stability analysis and numerical simulations based on a mixed finite element formulation, which have allowed us to study the dynamical behaviour of the system in terms of the qualitative shape of the dispersion relation. We show that the consideration of mechanotaxis, namely changes in migration speeds and directions in response to mechanical stimuli alters the conditions for pattern formation in a singular manner. Furthermore without non-local effects, responses to mechanical stimuli are observed to result in dispersion relations with positive growth rates at arbitrarily large wavenumbers, in turn yielding heterogeneity at the cellular level in model predictions. This highlights the sensitivity and necessity of non-local effects in mechanically influenced biological pattern formation models and the ultimate failure of the continuum approximation in their absence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alastrué, V., Rodríguez, J.F., Calvo, B., Doblaré, M., 2007. Structural damage models for fibrous biological soft tissues. Int. J. Solids Struct. 44, 5894–5911.

    Article  MATH  Google Scholar 

  • Barocas, V.H., Moon, A.G., Tranquillo, R.T., 1995. The fibroblast-populated collagen microshpere assay of cell traction force—Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117, 161–170.

    Article  Google Scholar 

  • Barrett, J.W., Blowey, J.F., Garcke, H., 1999. Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37, 286–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Bischofs, I.B., Schwarz, U.S., 2003. Cell organization in soft media due to active mechanosensing. Proc. Natl. Acad. Sci. U.S.A. 100, 9274–9279.

    Article  Google Scholar 

  • Collen, A., Koolwijk, P., Kroon, M., van Hinsbergh, V.W.M., 1998. Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2, 153–165.

    Google Scholar 

  • Conway, E.M., Collen, D., Carmeliet, P., 2001. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521.

    Article  Google Scholar 

  • Cross, M.C., Hohenberg, P.C., 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112.

    Article  Google Scholar 

  • Cruywagen, G.C., Maini, P.K., Murray, J.D., 1997. Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis. SIAM J. Appl. Math. 57, 1485–1509.

    Article  MATH  MathSciNet  Google Scholar 

  • Cullinane, D.M., Salisbury, K.T., Alkhiary, Y., Eisenberg, S., Gerstenfeld, L., Einhorn, T.A., 2003. Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development? J. Exp. Biol. 206, 2459–2471.

    Article  Google Scholar 

  • Dassault Systèmes Simulia Corp., 2006. Abaqus user’s Manual, v. 6.6. Providence, RI, USA.

  • Davidson, D., 1983a. The mechanism of feather pattern development in the chick. I. The time of determination of feather position. J. Embryol. Exp. Morph. 74, 245–259.

    Google Scholar 

  • Davidson, D., 1983b. The mechanism of feather pattern development in the chick. II. Control of the sequence of pattern formation. J. Embryol. Exp. Morph. 74, 261–273.

    Google Scholar 

  • Dickinson, R.B., Tranquillo, R.T., 1993. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 31, 563–600.

    Article  MATH  Google Scholar 

  • Discher, D.E., Janmey, P., Wang, Y., 2005. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143.

    Article  Google Scholar 

  • Doblaré, M., García-Aznar, J.M., 2005. On the numerical modelling of growth, differentiation and damage in structural living tissues. Arch. Comput. Methods Eng. 11, 1–45.

    Google Scholar 

  • Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., Discher, D., 2004. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628.

    Article  Google Scholar 

  • Feng, X., Prohl, A., 2003. Analysis of a fully-discrete finite element method for the phase field model and approximation of its sharp interface limits. SIAM J. Numer. Anal. 73, 541–567.

    MathSciNet  Google Scholar 

  • Ferrenq, I., Tranqui, L., Vailhe, B., Gumery, P.Y., Tracqui, P., 1997. Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta. Biotheor. 45, 267–293.

    Article  Google Scholar 

  • Field, R.J., Burger, M., 1985. Oscillations and Traveling Waves in Chemical Systems. Wiley, New York.

    Google Scholar 

  • FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.

    Article  Google Scholar 

  • Flesselles, J.M., Simon, A.J., Libchaber, A., 1991. Dynamics of one-dimensional interfaces: an experimentalists’ overview. Adv. Phys. 40, 1–51.

    Article  Google Scholar 

  • Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S., 2004. A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625.

    Article  MATH  MathSciNet  Google Scholar 

  • Ghosh, K., Pan, Z., Guan, E., Ge, S., Liu, Y., Nakamura, T., Ren, X., Rafailovich, M., Clark, R.A.F., 2007. Cell adaptation to a physiologically relevant ecm mimic with different viscoelastic properties. Biomaterials 28, 671–679.

    Article  Google Scholar 

  • Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Glass, L., Hunter, P., 1990. There is a theory of heart. Physica D 43, 1–16.

    MATH  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544.

    Google Scholar 

  • Holmes, M.J., Sleeman, B.D., 2000. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol. 202, 95–112.

    Article  Google Scholar 

  • Hughes, T.J.R., 2000. The Finite Element Method, 1st edn. Dover, New York.

    MATH  Google Scholar 

  • Hunter, P., Pullan, A., Smaill, B., 2003. Modeling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177.

    Article  Google Scholar 

  • Khatiwala, C.B., Peyton, S.R., Putnam, A.J., 2006. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290, 1640–1650.

    Article  Google Scholar 

  • Lim, C.T., Zhou, E.H., Quek, S.T., 2006. Mechanical models for living cells—a review. J. Biomech. 39, 195–216.

    Article  Google Scholar 

  • Lo, C., Wang, H., Dembo, M., Wang, Y., 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152.

    Article  Google Scholar 

  • Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D., 1991. Bifurcating spatially heterogeneous solutions in chemotaxis model for biological pattern generation. Bull. Math. Biol. 53, 701–719.

    MATH  Google Scholar 

  • Manoussaki, D., 2003. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM: Math. Model. Numer. Anal. 37, 581–599.

    Article  MATH  MathSciNet  Google Scholar 

  • Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D., 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44, 271–282.

    Article  Google Scholar 

  • Meinhardt, H., Prusinkiewicz, P., Fowler, D.R., 2003. The Algorithmic Beauty of Sea Shells, 3rd edn. Springer, Berlin.

    MATH  Google Scholar 

  • Mittenthal, J.E., Mazo, R.M., 1983. A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment. J. Theor. Biol. 100, 443–483.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., Maini, P.K., 2006. Mixed-mode pattern in doublefoot mutant mouse limb—Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Moloney, J.V., Newell, A.C., 1990. Nonlinear optics. Physica D 44, 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater. 4, 613–621.

    Article  Google Scholar 

  • Murray, J.D., 1981a. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B 295, 473–496.

    Article  Google Scholar 

  • Murray, J.D., 1981b. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 143–163.

    Article  Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology, 1st edn. Springer, Berlin.

    MATH  Google Scholar 

  • Murray, J.D., 2003. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C. R. Biol. 326, 239–252.

    Article  Google Scholar 

  • Murray, J.D., Oster, G.F., 1984. Generation of biological pattern and form. IMA J. Math. Appl. Med. Biol. 1, 51–75.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, J.D., Maini, P.K., Tranquillo, R.T., 1988. Mechanochemical models for generating biological pattern and form in development. Phys. Rep. 171, 59–84.

    Article  MathSciNet  Google Scholar 

  • Nagayama, M., Haga, H., Takahashi, M., Saitoh, T., Kawabata, K., 2004. Contribution of cellular contractility to spatial and temporal variations in cellular stiffness. Exp. Cell Res. 300, 396–405.

    Article  Google Scholar 

  • Nagumo, J.S., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2071.

    Article  Google Scholar 

  • Namy, P., Ohayon, J., Tracqui, P., 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 202, 103–120.

    Article  MathSciNet  Google Scholar 

  • Oster, G.F., Murray, J.D., Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morph. 78, 83–125.

    Google Scholar 

  • Park, J.Y., Gemmell, C.H., Davies, J.E., 2001. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22, 2671–2682.

    Article  Google Scholar 

  • Pavlin, D., Dove, S.B., Zadro, R., Gluhak-Heinrich, J., 2000. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif. Tissue Int. 67, 163–172.

    Article  Google Scholar 

  • Pelham, R.J., Wang, Y., 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94, 13,661–13,665.

    Article  Google Scholar 

  • Peña, E., Calvo, B., Martínez, M.A., Doblaré, M., 2007. An anisotropic visco-hyperelastic model for ligaments at finite strains formulation and computational aspects. Int. J. Solids Struct. 44, 760–778.

    Article  MATH  Google Scholar 

  • Perumpanani, A.J., Byrne, H.M., 1999. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35, 1274–1280.

    Article  Google Scholar 

  • Peyton, S.R., Putnam, A.J., 2005. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 204, 198–209.

    Article  Google Scholar 

  • Ramtani, S., 2004. Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation. J. Biomech. 37, 1709–1718.

    Article  Google Scholar 

  • Schäfer, A., Radmacher, M., 2005. Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater. 1, 273–280.

    Article  Google Scholar 

  • Schwarz, U.S., Bischofs, I.B., 2005. Physical determinants of cell organization in soft media. Med. Eng. Phys. 27, 763–772.

    Article  Google Scholar 

  • Shreiber, D.I., Barocas, V.H., Tranquillo, R.T., 2003. Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys. J. 84, 4102–4114.

    Article  Google Scholar 

  • Stéphanou, A., Meskaoui, G., Vailhé, B., Tracqui, P., 2007. The rigidity of fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvas. Res. 73, 182–190.

    Article  Google Scholar 

  • Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Vailhé, B., Vittet, D., Feige, J.J., 2001. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81, 439–452.

    Google Scholar 

  • Wells, G.N., Kuhl, E., Garikipati, K., 2006. A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  Google Scholar 

  • Yang, L., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R., 2002. Pattern formation arising from interactions between Turing and wave instabilities. J. Chem. Phys. 117, 7259–7265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moreo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreo, P., Gaffney, E.A., García-Aznar, J.M. et al. On the Modelling of Biological Patterns with Mechanochemical Models: Insights from Analysis and Computation. Bull. Math. Biol. 72, 400–431 (2010). https://doi.org/10.1007/s11538-009-9452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9452-4

Keywords

Navigation