Skip to main content
Log in

The Evolution of Conditional Dispersal Strategies in Spatially Heterogeneous Habitats

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

To understand the evolution of dispersal, we study a Lotka–Volterra reaction–diffusion–advection model for two competing species in a heterogeneous environment. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. Two new phenomena are found for one-dimensional habitats and monotone intrinsic growth rates: (i) If both species disperse only by random diffusion, i.e., no advection, it was well known that the slower diffuser always wins. We show that if both species have the same advection rate which is suitably large, the faster dispersal will evolve; (ii) If both species have the same random dispersal rate, it was known that the species with a little advection along the resource gradient always wins, provided that the other species is a pure random disperser and the habitat is convex. We show that if both species have the same random dispersal rate and both also have suitably large advection rates, the species with a little smaller advection rate always wins. Implications of these results for the habitat choices of species will be discussed. Some future directions and open problems will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasekare, P., 2008. Spatial dynamics of foodwebs. Annu. Rev. Ecol. Evol. Syst. 39, 479–500.

    Article  Google Scholar 

  • Armsworth, P.R., Roughgarden, J.E., 2005a. The impact of directed versus random movement on population dynamics and biodiversity patterns. Am. Nat. 165, 449–465.

    Article  Google Scholar 

  • Armsworth, P.R., Roughgarden, J.E., 2005b. Disturbance induces the contrasting evolution of reinforcement and dispersiveness in directed and random movers. Evolution 59, 2083–2096.

    Google Scholar 

  • Aronson, D.G., 1985. The role of diffusion in mathematical population biology: Skellam revisited. In: Capasso, V., Grosso, E., Paveri-Fontana, S.L. (Eds.), Mathematics in Biology and Medicine, Lecture Notes in Biomathematics, vol. 57, pp. 2–6. Springer, Berlin.

    Google Scholar 

  • Baskett, M.L., Micheli, F., Levin, S.A., 2007. Designing marine reserves for interacting species: Insights from theory. Biol. Conserv. 137, 163–179.

    Article  Google Scholar 

  • Belgacem, F., 1997. Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Research Notes in Mathematics, vol. 368. Longman, Harlow.

    MATH  Google Scholar 

  • Belgacem, F., Cosner, C., 1995. The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment. Can. Appl. Math. Q. 3, 379–397.

    MATH  MathSciNet  Google Scholar 

  • Bowler, D.E., Benten, T.G., 2005. Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biol. Rev. 80, 205–225.

    Article  Google Scholar 

  • Cantrell, R.S., Cosner, C., 2003. Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology. Wiley, New York.

    Book  MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., Lou, Y., 2006. Movement towards better environments and the evolution of rapid diffusion. Math. Biosci. 204, 199–214.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., DeAngelis, D.L., Padrón, V., 2007a. The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn. 1, 249–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., Lou, Y., 2007b. Advection mediated coexistence of competing species. Proc. R. Soc. Edinb. A 137, 497–518.

    MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., Lou, Y., 2008. Approximating the ideal free distribution via reaction–diffusion–advection equations. J. Differ. Equ. 245, 3687–3703.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, X.F., Lou, Y., 2008. Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model. Indiana Univ. Math. J. 57, 627–658.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, X.F., Hambrock, R., Lou, Y., 2008. Evolution of conditional dispersal: a reaction–diffusion–advection model. J. Math. Biol. 57, 361–386.

    Article  MATH  MathSciNet  Google Scholar 

  • Cosner, C., Lou, Y., 2003. Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277, 489–503.

    Article  MATH  MathSciNet  Google Scholar 

  • Dancer, E.N., 1995. Positivity of maps and applications. Topological nonlinear analysis. In: Matzeu, Vignoli (Eds.), Prog. Nonlinear Differential Equations Appl., vol.15, pp. 303–340. Birkhauser, Boston.

    Google Scholar 

  • Doncaster, C.P., Clobert, J., Doligez, B., Gustafsson, L., Danchin, E., 1997. Balanced dispersal between spatially varying local populations: an alternative to the source-sink model. Am. Nat. 150, 425–445.

    Article  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M., 1998. The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83.

    Article  MATH  MathSciNet  Google Scholar 

  • Doebeli, M., 1995. Dispersal and dynamics. Theor. Popul. Biol. 47, 82–106.

    Article  MATH  Google Scholar 

  • Dieckmann, U., 1997. Can adaptive dynamics invade? Trends Ecol. Evol. 12, 128–131.

    Article  Google Scholar 

  • Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612.

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann, O., 2003. A beginner’s guide to adaptive dynamics. Banach Cent. Publ. 63, 47–86.

    Article  MathSciNet  Google Scholar 

  • Diekmann, O., Jabin, P.-E., Mischler, S., Perthame, B., 2005. The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67, 257–271.

    Article  MATH  Google Scholar 

  • Farnsworth, K., Beecham, J., 1999. How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am. Nat. 153, 509–526.

    Article  Google Scholar 

  • Farnsworth, K.D., Anderson, A.R.A., 2001. How simple grazing rules can lead to persistent boundaries in vegetation communities. Oikos 95, 15–24.

    Article  Google Scholar 

  • Faugeras, B., Maury, O., 2007. Modeling fish population movements: From an individual-based representation to an advection–diffusion equation. J. Theor. Biol. 247, 837–848.

    Article  MathSciNet  Google Scholar 

  • Geritz, S.A.H., Kisdi, E., Meszena, G., Metz, J.A.J., 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57.

    Article  Google Scholar 

  • Gilbarg, D., Trudinger, N., 1983. Elliptic Partial Differential Equation of Second Order, 2nd edn. Springer, Berlin.

    Google Scholar 

  • Grindrod, P., 1988. Models of individual aggregation or clustering in single and multiple-species communities. J. Math. Biol. 26, 651–660.

    MATH  MathSciNet  Google Scholar 

  • Gyllenberg, M., Parvinen, K., 2001. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63, 981–993.

    Article  Google Scholar 

  • Hastings, A., 1983. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24, 244–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Hess, P., 1991. Periodic Parabolic Boundary Value Problems and Positivity. Longman, Harlow.

    MATH  Google Scholar 

  • Hillen, T., 2003. Transport equations with resting phases. Eur. J. Appl. Math. 14, 613–636.

    Article  MATH  MathSciNet  Google Scholar 

  • Hirsch, M.W., 1988. Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math. 383, 1–51.

    MATH  MathSciNet  Google Scholar 

  • Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R., 1984. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29.

    Article  Google Scholar 

  • Holt, R.D., 1985. Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28, 181–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Holt, R.D., McPeek, M.A., 1996. Chaotic population dynamics favors the evolution of dispersal. Am. Nat. 148, 709–718.

    Article  Google Scholar 

  • Hsu, S., Smith, H., Waltman, P., 1996. Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Y., 2005. How do cross-migration models arise. Math. Biosci. 195, 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Hutson, V., Mischaikow, K., Poláčik, P., 2001. The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533.

    Article  MATH  MathSciNet  Google Scholar 

  • Karim, M.R., Sekine, M., Higuchi, T., Imai, T., Ukida, M., 2003. Simulation of fish behavior and mortality in hypoxic water in an enclosed bay. Ecol. Model. 159, 27–42.

    Article  Google Scholar 

  • Kirkland, S., Li, C.-K., Schreiber, S.J., 2006. On the evolution of dispersal in patchy environments. SIAM J. Appl. Math. 66, 1366–1382.

    Article  MATH  MathSciNet  Google Scholar 

  • Levin, S.A., Muller-Landau, H.C., Nathan, R., Chave, J., 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Eco. Evol. Syst. 34, 575–604.

    Article  Google Scholar 

  • Lutscher, F., Pachepsky, E., Lewis, M., 2005. The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772.

    Article  MATH  MathSciNet  Google Scholar 

  • Lutscher, F., McCauley, E., Lewis, M., 2007. Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277.

    Article  MATH  Google Scholar 

  • Matano, H., 1984. Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems. J. Fac. Sci. Univ. Tokyo 30, 645–673.

    MATH  MathSciNet  Google Scholar 

  • McPeek, M.A., Holt, R.D., 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140, 1010–1027.

    Article  Google Scholar 

  • Morris, D.W., Diffendorfer, J.E., Lundberg, P., 2004. Dispersal among habitats varying in fitness: reciprocating migration through ideal habitat selection. Oioks 107, 559–575.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Okubo, A., Levin, S.A., 2001. Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Interdisciplinary Applied Mathematics, vol. 14. Springer, Berlin.

    Google Scholar 

  • Okubo, A., Maini, P.K., Williams, M.H., Murray, J.D., 1989. On the spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B 238, 113–125.

    Article  Google Scholar 

  • Poláčik, P., 2006. Private communication.

  • Potapov, A.B., Lewis, M.A., 2004. Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 66, 975–1008.

    Article  MathSciNet  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Smith, H., 1995. Monotone Dynamical Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence.

    MATH  Google Scholar 

  • Travis, J.M.J., Dytham, C., 1999. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. Lond. B 266, 723–728.

    Article  Google Scholar 

  • Travis, J.M.J., French, D.R., 2000. Dispersal functions and spatial models: expanding our dispersal toolbox. Ecol. Lett. 3, 163–165.

    Article  Google Scholar 

  • Yodzis, P., 1989. Introduction to Theoretical Ecology. Harper and Row, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hambrock, R., Lou, Y. The Evolution of Conditional Dispersal Strategies in Spatially Heterogeneous Habitats. Bull. Math. Biol. 71, 1793–1817 (2009). https://doi.org/10.1007/s11538-009-9425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9425-7

Keywords

Navigation