Skip to main content
Log in

A 3D Motile Rod-Shaped Monotrichous Bacterial Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce a 3D model for a motile rod-shaped bacterial cell with a single polar flagellum which is based on the configuration of a monotrichous type of bacteria such as Pseudomonas aeruginosa. The structure of the model bacterial cell consists of a cylindrical body together with the flagellar forces produced by the rotation of a helical flagellum. The rod-shaped cell body is composed of a set of immersed boundary points and elastic links. The helical flagellum is assumed to be rigid and modeled as a set of discrete points along the helical flagellum and flagellar hook. A set of flagellar forces are applied along this helical curve as the flagellum rotates. An additional set of torque balance forces are applied on the cell body to induce counter-rotation of the body and provide torque balance. The three-dimensional Navier–Stokes equations for incompressible fluid are used to describe the fluid dynamics of the coupled fluid–microorganism system using Peskin’s immersed boundary method. A study of numerical convergence is presented along with simulations of a single swimming cell, the hydrodynamic interaction of two cells, and the interaction of a small cluster of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthurs, K.M., Moore, L.C., Peskin, C.S., Pitman, E.B., Layton, H.E., 1998. Modeling arteriolar flow and mass transport using the immersed boundary method. J. Comput. Phys. 147, 402–440.

    Article  MATH  MathSciNet  Google Scholar 

  • Batchelor, G.K., 1970. Slender-body theory for particles of arbitrary cross section in Stokes flow. J. Fluid Mech. 44, 419–440.

    Article  MATH  MathSciNet  Google Scholar 

  • Berg, H.C., 1975a. Bacterial behavior. Nature 254, 389–392.

    Article  Google Scholar 

  • Berg, H.C., 1975b. Chemotaxis in bacteria. Ann. Rev. 4, 119–136.

    Google Scholar 

  • Berg, H.C., 1975c. How bacteria swim. Sci. Am. 233, 36–44.

    Article  Google Scholar 

  • Berg, H.C., 1986. Chemotaxis gene unveiled. Nature 321, 200–201.

    Article  Google Scholar 

  • Berg, H.C., 1993. Random Walks in Biology: Expanded Edition. Princeton University Press, Princeton.

    Google Scholar 

  • Berg, H.C., 1996. Symmetries in bacterial motility. Proc. Natl. Acad. Sci. USA. 93, 14225–14228.

    Article  Google Scholar 

  • Berg, H.C., 2000. Motile behavior of bacteria. Physics Today on the Web-Cover Story. Available from: http://www.aip.org/pt/jcn00/berg.htm.

  • Berg, H.C., 2003. The rotary motor of bacterial flagella. Ann. Rev. Biochem. 72, 19–54.

    Article  Google Scholar 

  • Berg, H.C., Anderson, R.A., 1973. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382.

    Article  Google Scholar 

  • Berg, H.C., Brown, D.A., 1972. Chemotaxis in escherichia coli analyzed by three-dimensional tracking. Nature 239, 500–504.

    Article  Google Scholar 

  • Berg, H.C., Turner, L., 1990. Chemotaxis of bacteria in glass capillary array: Escherichia coli, motility, microchannel plate and light scattering. Biophys. J. 58, 919–930.

    Article  Google Scholar 

  • Berg, H.C., Turner, L., 1993. Torque generated by the flagellar motor of escherichia coli. Biophys. J. 65, 2201–2216.

    Article  Google Scholar 

  • Berg, H.C., Turner, L., 1994. Cells of escherichia coli swim either end forward. Cell Biol. 92, 477–479.

    Google Scholar 

  • Berke, A.P., Turner, L., Berg, H.C., Lauga, E., 2008. Hydrodynamic attraction of swimming organisms by surfaces. Phys. Rev. Lett. 101, 038102.

    Article  Google Scholar 

  • Berry, R.M., Berg, H.C., 1999. Torque generated by the flagellar motor of escherichia coli while driven backward. Biophys. J. 76, 580–587.

    Article  Google Scholar 

  • Beyer, R.P. Jr., 1992. A computational model of the cochlea using the immersed boundary method. J. Comput Phys. 98(1), 145–162.

    Article  MATH  Google Scholar 

  • Bottino, D.C., 1998. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113.

    Article  MATH  Google Scholar 

  • Bottino, D.C., Fauci, L.J., 1998. A computational model of ameboid deformation and locomotion. Eur. Biophys. J. 27, 532–539.

    Article  Google Scholar 

  • Boyd, A., Simon, M., 1982. Bacterial chemotaxis. Ann. Rev. Physiol. 44, 501–517.

    Article  Google Scholar 

  • Brokaw, C.J., 1965. Non-sinusoidal bending wave of sperm falgella. J. Exp. Biol. 43, 155–169.

    Google Scholar 

  • Brokaw, C.J., 2003. Swimming with three-dimensional flagellar bending waves. Available from: http://www.cco.caltech.edu/~brokawc/Suppl3D/Swim3D.pdf.

  • Brokaw, C.J., 2006. Falgella propulsion. J. Exp. Biol. Class. 209, 985–986.

    Article  Google Scholar 

  • Budrene, E.O., Berg, H.C., 1991. Complex pattern formed by motile cells of e. coli. Nature 349, 630–633.

    Article  Google Scholar 

  • Childress, S., 1981. Mechanics of Swimming and Flying. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Cogan, N.G., Wolgemuth, C.W., 2005. Pattern formation by bacteria-driven flow. Biophys. J. 88, 2525–2529.

    Article  Google Scholar 

  • Cortez, R., Fauci, L.J., Cowen, N., Dillon, R., 2004. Simulation of swimming organisms: Coupling internal mechanics with external fluid dynamics. Comput. Sci. Eng. 6(3), 38–45.

    Article  Google Scholar 

  • Cox, R.G., 1970. The motion of long slender bodies in a viscous fluid. Part 1: General theory. J. Fluid Mech. 44, 791–810.

    Article  MATH  Google Scholar 

  • Darnton, N.C., Turner, L., Rojevsky, S., Berg, H.C., 2007. On torque and tumbling in swimming escherichia coli. J. Bacteriol. 189, 1756–1764.

    Article  Google Scholar 

  • Delden, C.V., Iglewski, B.H., 1998. Cell-to-cell signaling and pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4(4), 551–560.

    Article  Google Scholar 

  • DePamphilis, M.L., Adler, J., 1970. Fine structure and isolation of the Hook–Basal body complex of flagella from escherichia coli and bacillus subtilis. J. Bacteriol. 105(1), 384–395.

    Google Scholar 

  • Dillon, R., Fauci, L.J., 2000a. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430.

    Article  Google Scholar 

  • Dillon, R., Fauci, L.J., 2000b. A Microscale Model of Bacterial and Biofilm Dynamics in Porous Media. Wiley, New York.

    Google Scholar 

  • Dillon, R., Othmer, H.G., 1999. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 197, 295–330.

    Article  Google Scholar 

  • Dillon, R., Fauci, L.J., Fogelson, A.L., Gaver, D., 1988. Modeling biofilm processes using the immersed boundary method. J. Comput. Phys. 129, 57–73.

    Article  Google Scholar 

  • Dillon, R., Fauci, L.J., Gaver, D., 1995. A microscale model of bacterial swimming, chemotaxis and substrate transport. J. Theor. Biol. 177, 325–340.

    Article  Google Scholar 

  • Dillon, R., Fauci, L., Omoto, C., Yang, X.Z., 2007. Fluid dynamic models of flagellar and ciliary beating. NYAS 1101, 494–505.

    Article  Google Scholar 

  • Dillon, R., Painter, K., Owen, M., 2008. A single-cell-based model of multicellular growth using the immersed boundary method. AMS Contemp. Math. 466, 1–15.

    MathSciNet  Google Scholar 

  • DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H., Whitesides, G.M., 2005. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274.

    Article  Google Scholar 

  • Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O., 2004. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103.

    Article  Google Scholar 

  • Doyle, T.B., Hawkins, A.C., McCarter, L.K., 2004. The complex flagellar torque generator of pseudomanas aeruginosa. J. Bacteriol. 186, 6341–6350.

    Article  Google Scholar 

  • Erban, R., Othmer, H.G., 2007. Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885.

    Article  MATH  MathSciNet  Google Scholar 

  • Fauci, L.J., 1993. Computational modeling of the swimming of biflagellated algal cells. Contemp. Math. 141, 91–102.

    MathSciNet  Google Scholar 

  • Fauci, L.J., 1996. A computational model of the fluid dynamics of undulatory and flagellar swimming. Am. Zool. 36, 599–607.

    Google Scholar 

  • Fauci, L.J., Fogelson, A.L., 1993. Truncated Newton method and the modeling of complex immersed elastic structures. J. Commun. Pure Appl. Math. XLVI, 787–818.

    Article  MathSciNet  Google Scholar 

  • Fauci, L.J., McDonald, A., 1995. Sperm motility in the presence of boundaries. Bull. Math. Biol. 57(5), 679–699.

    MATH  Google Scholar 

  • Fauci, L.J., Peskin, C.S., 1988. A computational model of aquatic animal locomotion. J. Comput. Phys. 77(1), 85–108.

    Article  MATH  MathSciNet  Google Scholar 

  • Fogelson, A.L., 1984. A mathematical model and numerical method for study platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 56(1), 111.

    Article  MATH  MathSciNet  Google Scholar 

  • Fogelson, A.L., 1993. Continuum models of platelet aggregation: Mechanical properties and chemically-induced phase transitions. In: Fluid Dynamics in Biology, Contemporary Mathematics Series. American Mathematical Society, Providence.

    Google Scholar 

  • Fund, D.D., Berg, H.C., 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812.

    Article  Google Scholar 

  • Gabel, C.V., Berg, H.C., 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. PNAS 100, 8748–8751.

    Article  Google Scholar 

  • Gebremichael, Y., Ayton, G.S., Voth, G.A., 2006. Mesoscopic modeling of bacterial flagellar microhydrodynamics. Biophys. J. 91, 3640–3652.

    Article  Google Scholar 

  • Givelberg, E., Bunn, J., 2003. A comprehensive three-dimensional model of the cochlea. J. Comput. Phys. 191(2), 377–391.

    Article  MATH  Google Scholar 

  • Gracheva, M.E., Othmer, H.G., 2004. A continuum model of motility in ameboid cells. Bull. Math. Biol. 66, 167–193.

    Article  MathSciNet  Google Scholar 

  • Gray, J., 1939a. Coornian lecture: Aspects of animal locomotion. Proc. R. Lond. Ser. B, Containing papers of a Biological Character 128, 28–62.

    Article  Google Scholar 

  • Gray, J., 1939b. Studies in animal locomotion: viii. The kinetics of locomotion of nereis diversicolor. J. Exp. Biol. 16, 9–17.

    Google Scholar 

  • Gray, J., 1946. The mechanism of locomotion in snakes. J. Exp. Biol. 23, 101–120.

    Google Scholar 

  • Gray, J., Hancock, G.J., 1955. The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814.

    Google Scholar 

  • Hancock, G.J., 1953. The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. A 217, 96–121.

    Article  MATH  MathSciNet  Google Scholar 

  • Harshey, R.M., 2003. Bacterial motility on a surface: many ways to a common goal. Ann. Rev. Microbiol 57, 249–273.

    Article  Google Scholar 

  • Higdon, J.J.L., 1979a. The generation of feeding currents by flagellar motions. J. Fluid Mech. 94, 305–330.

    Article  MATH  MathSciNet  Google Scholar 

  • Higdon, J.J.L., 1979b. A hydrodynamics analysis of flagellar propulsion. J. Fluid Mech. 90, 685–711.

    Article  MATH  MathSciNet  Google Scholar 

  • Higdon, J.J.L., 1979c. The hydrodynamics of flagellar propulsion: Helical waves. J. Fluid Mech. 94, 331–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Hopkins, M.M., 2002. Fauci, L.J., A computational model of the collective fluid dynamics of motile microorganisms.

  • Hsu, C.Y., 2007. A 3D Bacterial Swimming Model Coupled with External Fluid Mechanics Using the Immersed Boundary Method. Ph.D. Thesis.

  • Hsu, C.Y., Dillon, R., 2009. The hydrodynamic interaction of elastic structures with motile bacteria (in preparation).

  • Ishikawa, T., Hota, M., 2006. Interaction of two swimming paramecia. J. Exp. Biol. 209, 4452–4463.

    Article  Google Scholar 

  • Ishikawa, T., Pedley, T.J., 2007. Diffusion of swimming model microorganisms in a semi-dilute suspension. J Fluid Mech. 588, 437–462.

    MATH  MathSciNet  Google Scholar 

  • Ishikawa, T., Sekiya, G., Imai, Y., Yamaguchi, T., 2007. Hydrodynamic interactions between two swimming bacteria. Biophys. J. 93, 2217–2225.

    Article  Google Scholar 

  • Jánosi, I.M., Kessler, J.O., Horváth, V.K., 1998. Onset of bioconvection in suspensions of bacillus subtilis. Phys. Rev. E 58(4), 4793–4800.

    Article  Google Scholar 

  • Johnson, R.E., Brokaw, C.J., 1979. Flagellar hydrodynamics. Biophys. J. 25, 113–127.

    Article  Google Scholar 

  • Kudo, S., Imai, N., Nishitoba, M., Sugiyama, S., Magariyama, Y., 2005. Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiol. Lett. 242, 221–225.

    Article  Google Scholar 

  • Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W., Adler, J., 1974. Change in direction of flagellar rotation in the basis of the chemotactic response in Escherichia coli. Nature 249, 75–77.

    Article  Google Scholar 

  • Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A., 2006. Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400–412.

    Article  Google Scholar 

  • Li, G., Tang, J.X., 2006. Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophys. J. 91, 2726–2734.

    Article  Google Scholar 

  • Lighthill, J., 1975. Mathematical Biofluiddynamics. CBMS, vol. 17. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Lighthill, J., 1976. Flagellar hydrodynamics. SIAM Rev. 18(2), 161–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Lim, S., Peskin, C.S., 2004. Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25(6), 2066–2083.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, Z., Papadopoulos, K.D., 1995. Unidirectional motility of Escherichia coli in restrictive capillaries. Appl. Environ. Microbiol. 61(10), 3567–3572.

    Google Scholar 

  • Liu, Z., Chen, W., Papadopoulos, K.D., 1997. Bacterial motility, collisions and aggregation in a 3-μm-diameter capillary. Biotechnol. Bioeng. 53, 238–241.

    Article  Google Scholar 

  • Machin, K.E., 1958. Wave propagation along flagella. J. Exp. Biol. 35, 796–806.

    Google Scholar 

  • Magariyama, Y., Masuda, S.Y., Takano, Y., Ohtani, T., Kudo, S., 2001. Difference between forward and backward swimming speeds of the single polar flagellated bacterium, Vibrio alginolyticus. FEMS Microbiol. Lett. 205, 343–347.

    Article  Google Scholar 

  • Magariyama, Y., Ichiba, M., Nakata, K., Baba, K., Ohtani, T., Kudo, S., Goto, T., 2005. Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophys. J. 88, 3648–3658.

    Article  Google Scholar 

  • Maki, N., Gestwicki, J.E., Lake, E.M., Kiesslingm, L.L., Adler, J., 2000. Motility and chemotaxis of filamentous cells of Escherichia coli. J. Bacteriol. 182(15), 4337–4342.

    Article  Google Scholar 

  • McCarter, L.L., 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65, 445–462.

    Article  Google Scholar 

  • McQueen, D.M., Peskin, C.S., 2000. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34, 56–60.

    Google Scholar 

  • McQueen, D.M., Peskin, C.S., 2001. Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In: Aref, H., Phillips, J.W. (Eds.), Mechanics for a New Millennium, Proceedings of the International Conference on Theoretical and Applied Mechanics (ICTAM) 2000. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Mitchell, J.G., 2002. The energetics and scaling of search strategies in bacteria. Am. Nat. 160(6), 727–740.

    Article  Google Scholar 

  • Mitchell, J.G., Martinez-Alonso, M., Lalucat, J., Esteve, I., Brown, S., 1991. Velocity changes, long runs, and reversals in Chromatium minus swimming response. J. Bacteriol. 173, 997–1003.

    Google Scholar 

  • Mittal, N., Budrene, E.O., Brenner, M.P., Oudenaarden, A.V., 2003. Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. PNAS 100(3), 13259–13263.

    Article  Google Scholar 

  • Monaghan, J.J., 1994. Simulation free surface flows with SPH. J. Comput. Phys. 110, 399–406.

    Article  MATH  Google Scholar 

  • Nasseri, S., Phan-Thien, N., 1997. Hydrodynamic interaction between two nearby swimming micromachines. Comput. Mech. 20, 551–559.

    Article  MATH  Google Scholar 

  • Peskin, C.S., 1977. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 221–249.

    Article  MathSciNet  Google Scholar 

  • Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 1–39.

    Article  MathSciNet  Google Scholar 

  • Peskin, C.S., McQueen, D.M., 1989. A three-dimensional computational model for blood flow in the heart: I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 372–405.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskin, C.S., McQueen, D.M., 1995. A general method for the computer simulation of biological systems interacting with fluids. In: Ellington, C.P., Pedley, T.J. (Eds.), Biological Fluid Dynamics. Company of Biologists, Cambridge.

    Google Scholar 

  • Phan-Thien, N., Tran-Cong, T., Ramia, M., 1987. A boundary-element analysis of flagellar propulsion. J. Fluid Mech. 184, 533–549.

    Article  Google Scholar 

  • Prescott, L.M., Hartley, J.P., Klein, D.A., 1993. Microbiology, 2nd edn. Brown, Dufanque.

    Google Scholar 

  • Ramia, M., Tullock, D.L., Phan-Thien, N., 1993. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778.

    Article  Google Scholar 

  • Reid, S.W., Leake, M.C., Chandler, J.H., Lo, C.J., Armitage, J.P., Berry, R.M., 2006. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. PNAS 103, 8066–8071.

    Article  Google Scholar 

  • Rejniak, K.A., 2007. An immersed boundary framework for modelling the growth of individual cells: an application to early tumour development. J. Theor Biol. 247, 186–204.

    Article  MathSciNet  Google Scholar 

  • Rejniak, K.A., Dillon, R., 2007. A single-cell based model of the ductal tumor microarchitecture. Comput. Math. Meth. Med. 8, 51–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Rejniak, K.A., Kliman, H.J., Fauci, L.J., 2004. A computational model of the mechanics of growth of the villous trophoblast bilayer. Bull. Math. Biol. 66, 199–232.

    Article  MathSciNet  Google Scholar 

  • Roberts, F.F. Jr., Doetsch, R.N., 1965. Some singular properties of bacterial flagella, with special reference to monotrichous forms. J. Bacteriol. 91(1), 414–421.

    Google Scholar 

  • Roma, A.M., 1996. A multilevel self adaptive version of the immersed boundary method. Ph.D. Thesis, Department of Mathematics, New York University.

  • Rosar, M.E., Peskin, C.S., 2001. Fluid flow in collapsible elastic tubes: A three-dimensional numerical model. NY J. Math. 153, 509–534.

    Google Scholar 

  • Savas, L., Duran, N., Savas, N., Önlen, Y., Ocak, S., 2005. The prevalence and resistance patterns of Pseudomonas aeruginosa in intensive care units in a university hospital. Turk J. Med. Sci. 35(5), 323–327.

    Google Scholar 

  • Sowa, Y., Hotta, H., Homma, M., Ishijima, A., 2003. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051.

    Article  Google Scholar 

  • Spormann, A.M., 1999. Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63(3), 621–641.

    Google Scholar 

  • Taylor, G.I., 1951a. The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. A 211, 225–239.

    Article  Google Scholar 

  • Taylor, G.I., 1951b. Analysis of the swimming of microscopic organisms. Proc. R. Soc. A 209, 447–461.

    Article  MATH  Google Scholar 

  • Taylor, G.I., 1952. Analysis of the swimming of long and narrow animals. Proc. R. Soc. A 214(1117), 158–183.

    Article  MATH  Google Scholar 

  • Thar, R., Kühl, M., 2002. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment. Appl. Environ. Microbiol. 68, 6310–6320.

    Article  Google Scholar 

  • Thar, R., Kühl, M., 2005. Complex pattern formation of marine gradient bacteria explained by a simple computer model. FEMS Microbiol. Lett. 246, 75–79.

    Article  Google Scholar 

  • Vesier, C.C., Yoganathan, A.P., 1992. A computer method for simulation of cardiovascular flow fields: Validation of approach. J. Comput. Phys. 99, 271–287.

    Article  MATH  Google Scholar 

  • Wang, N.T., Fogelson, A.L., 1999. Computational methods for continuum model of platelet aggregation. J. Comput. Phys. 151, 649–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y., Hayat, T., Siddiqui, A.M., 2005. Gliding motion of bacteria on power-law slime. Math. Meth. Appl. Sci. 28, 329–347.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolgemuth, C.W., Charon, N.W., 2005. The kinky propulsion of spiroplasma. Cell 122(6), 827.

    Article  Google Scholar 

  • Wolgemuth, C.W., Powers, T.R., Goldstein, R.E., 2000. Twirling and whirling: Viscous dynamics of rotating elastic filaments. Phys. Rev. Lett. 84(7), 1623–1626.

    Article  Google Scholar 

  • Xing, J.H., Bai, F., Berry, R., Oster, G., 2006. Torque-speed relationship of the bacterial flagellar motor. PNAS 103, 1260–1265.

    Article  Google Scholar 

  • Yang, X.-Z., Dillon, R., Fauci, L., 2008. An integrative computational model of multiciliary beating. Bull. Math. Biol. 70, 1192–1215.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Dillon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CY., Dillon, R. A 3D Motile Rod-Shaped Monotrichous Bacterial Model. Bull. Math. Biol. 71, 1228–1263 (2009). https://doi.org/10.1007/s11538-009-9400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9400-3

Keywords

Navigation