Skip to main content
Log in

An “Age” Structured Model of Hematopoietic Stem Cell Organization with Application to Chronic Myeloid Leukemia

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 106. To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the “age” structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, K.A., 1989. An Introduction to Numerical Analysis, 2nd edn. Wiley, New York.

    MATH  Google Scholar 

  • Branford, S., Hughes, T.P., Rudzki, Z., 1999. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br. J. Haematol. 107(3), 587–99.

    Article  Google Scholar 

  • Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Müller, M., Druker, B.J., Lydon, N.B., 1996. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56(1), 100–04.

    Google Scholar 

  • Colijn, C., Mackey, M.C., 2005. A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237(2), 117–32.

    Article  MathSciNet  Google Scholar 

  • Dingli, D., Michor, F., 2006. Successful therapy must eradicate cancer stem cells. Stem Cells 24(12), 2603–610.

    Article  Google Scholar 

  • d’Inverno, M., Luck, M., 2004. Understanding Agent Systems, 2nd edn. Springer, Berlin.

    MATH  Google Scholar 

  • Druker, B.J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G.M., Fanning, S., Zimmermann, J., Lydon, N.B., 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2(5), 561–66.

    Article  Google Scholar 

  • Glauche, I., Cross, M., Loeffler, M., Roeder, I., 2007. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 25(7), 1791–799.

    Article  Google Scholar 

  • Hochhaus, A., Weisser, A., La Rosée, P., Emig, M., Müller, M.C., Saussele, S., Reiter, A., Kuhn, C., Berger, U., Hehlmann, R., Cross, N.C., 2000. Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 14(6), 998–005.

    Article  Google Scholar 

  • Holtz, M., Forman, S.J., Bhatia, R., 2007. Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res. 67(3), 1113–120.

    Article  Google Scholar 

  • Horn, M., Loeffler, M., Roeder, I., 2008. Mathematical modeling of genesis and treatment of chronic myeloid leukemia. Cells Tissues Organs 188(1–2), 236–47.

    Article  Google Scholar 

  • Jørgensen, H.G., Copland, M., Allan, E.K., Jiang, X., Eaves, A., Eaves, C., Holyoake, T., 2006. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin. Cancer Res. 12(2), 626–33.

    Article  Google Scholar 

  • Kim, P.S., Lee, P.P., Levy, D., 2008a. Modeling imatinib-treated chronic myelogenous leukemia: reducing the complexity of agent-based models. Bull. Math. Biol. 70(3), 728–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, P.S., Lee, P.P., Levy, D., 2008b. A PDE model for imatinib-treated chronic myelogenous leukemia. Bull. Math. Biol. doi:10.1007/s11538-008-9336-z.

    Google Scholar 

  • LeVeque, R.J., 1990. Numerical Methods for Conservation Laws. Birkhäuser, Basel.

    MATH  Google Scholar 

  • Loeffler, M., Roeder, I., 2002. Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models—a conceptual approach. Cells Tissues Organs 171(1), 8–6.

    Article  Google Scholar 

  • Mauro, M.J., Druker, B.J., 2001. Chronic myelogenous leukemia. Curr. Opin. Oncol. 13(1), 3–.

    Article  Google Scholar 

  • Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured Populations. Springer, Berlin.

    MATH  Google Scholar 

  • Michor, F., 2007. Reply: the long-term response to imatinib treatment of CML. Br. J. Cancer 96(4), 679–80.

    Article  MathSciNet  Google Scholar 

  • Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A., 2005. Dynamics of chronic myeloid leukaemia. Nature 435(7046), 1267–270.

    Article  Google Scholar 

  • Roeder, I., 2003. Dynamic Modeling of Hematopoietic Stem Cell Organization—Design and Validation of the New Concept of Within-Tissue Plasticity. Dissertation, University of Leipzig, ISSN: 1610-7233.

  • Roeder, I., Glauche, I., 2007. Pathogenesis, treatment effects, and resistance dynamics in chronic myeloid leukemia—insights from mathematical model analyses. J. Mol. Med. 86(1), 17–7.

    Article  Google Scholar 

  • Roeder, I., Loeffler, M., 2002. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol. 30(8), 853–61.

    Article  Google Scholar 

  • Roeder, I., Lorenz, R., 2006. Asymmetry of stem cell fate and the potential impact of the niche: observations, simulations, and interpretations. Stem Cell Rev. 2(3), 171–80.

    Article  Google Scholar 

  • Roeder, I., Kamminga, L.M., Braesel, K., Dontje, B., de Haan, G., Loeffler, M., 2005. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood 105(2), 609–16.

    Article  Google Scholar 

  • Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M., 2006. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat. Med. 12(10), 1181–184.

    Article  Google Scholar 

  • Roeder, I., Braesel, K., Lorenz, R., Loeffler, M., 2007. Stem cell fate analysis revisited: interpretation of individual clone dynamics in the light of a new paradigm of stem cell organization. J. Biomed. Biotechnol. 2007(3), 84656.

    Google Scholar 

  • Savage, D.G., Antman, K.H., 2002. Imatinib mesylate—a new oral targeted therapy. N. Engl. J. Med. 346(9), 683–93.

    Article  Google Scholar 

  • Spanier, J., Oldham, K.B., 1987. The Dirac delta function δ(xa). In: An Atlas of Functions, pp. 79–2. Hemisphere, Washington. Chap. 10.

    Google Scholar 

  • Vigneri, P., Wang, J.Y., 2001. Induction of apoptosis in chronic myelogenous leukaemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med. 7(2), 228–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Roeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, I., Herberg, M. & Horn, M. An “Age” Structured Model of Hematopoietic Stem Cell Organization with Application to Chronic Myeloid Leukemia. Bull. Math. Biol. 71, 602–626 (2009). https://doi.org/10.1007/s11538-008-9373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9373-7

Keywords

Navigation