Skip to main content
Log in

Asymmetry of stem cell fate and the potential impact of the niche

Observations, simulations, and interpretations

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Asymmetric cell division is a common concept to explain the capability of stem cells to simultaneously produce a continuous output of differentiated cells and to maintain their own population of undifferentiated cells. Whereas for some stem cell systems, an asymmetry in the division process has explicitly been demonstrated, no evidence for such a functional asymmetry has been shown for hematopoietic stem cells (HSC) so far. This raises the question regarding whether asymmetry of cell division is a prerequisite to explain obvious heterogeneity in the cellular fate of HSC.

Through the application of a mathematical model based on self-organizing principles, we demonstrate that the assumption of asymmetric stem cell division is not necessary to provide a consistent account for experimentally observed asymmetries in the development of HSC. Our simulation results show that asymmetric cell fate can alternatively be explained by a reversible expression of functional stem cell potentials, controlled by changing cell-cell and cell-microenvironment interactions. The proposed view on stem cell organization is pointing to the potential role of stem cell niches as specific signaling environments, which induce developmental asymmetries and therefore, generate cell fate heterogeneity.

The self-organizing concept is fully consistent with the functional definition of tissue stem cells. It naturally includes plasticity phenomena without contradicting a hierarchical appearance of the stem cell population. The concept implies that stem cell fate is only predictable in a probabilistic sense and that retrospective categorization of stem cell potential, based on individual cellular fates, provides an incomplete picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potten CS, Loeffler M. Development 1990;110(4):1001–1020.

    PubMed  CAS  Google Scholar 

  2. Lord BI. In Stem Cells. In: Potten CS. (ed), Academic Press, Cambridge: 1997; pp. 401–422.

    Google Scholar 

  3. Loeffler M, Roeder I. Cells Tissues Organs 2002;171(1):8–26.

    Article  PubMed  Google Scholar 

  4. Till JE, McCulloch EA, Siminovitch L. Proc Natl Acad Sci 1964;51:29–36.

    Article  PubMed  CAS  Google Scholar 

  5. Ogawa M, Mosmann TR. In Leukemia: Recent Advances in Biology and Treatment. In: Gale RP, Golde DW. (ed), Alan R. Liss Inc., 1985; pp. 391–397.

  6. Loeffler M, Grossmann B. J Theor Biol 1991;150(2):175–191.

    Article  PubMed  CAS  Google Scholar 

  7. Loeffler M, Bratke T, Paulus U, Li YQ, Potten CS. J Theor Biol 1997;186(1):41–54.

    Article  PubMed  CAS  Google Scholar 

  8. Loeffler M, Potten CS. In Stem Cells. In: Potten CS. (ed), Academic Press, Cambridge: 1997; pp. 1–27.

    Google Scholar 

  9. Kay HEM. Lancet 1965;11:418.

    Article  Google Scholar 

  10. Abkowitz JL, Catlin SN, Guttorp P. Nat Med 1996;2(2):190–197.

    Article  PubMed  CAS  Google Scholar 

  11. Viswanathan S, Zandstra PW. Cytotechnology 2003;41:75–92.

    Article  CAS  PubMed  Google Scholar 

  12. Schofield R. Blood Cells 1978;4(1–2):7–25.

    PubMed  CAS  Google Scholar 

  13. Muller-Sieburg CE, Deryugina E. Stem Cells 1995;13(5):477–486.

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Xie T. Annu Rev Cell Dev Biol 2005;21:605–631.

    Article  PubMed  CAS  Google Scholar 

  15. Song X, Zhu CH, Doan C, Xie T. Science 2002;296(5574):1855–1857.

    Article  PubMed  CAS  Google Scholar 

  16. Lin H. Nature 2003;425(6956):353–355.

    Article  PubMed  CAS  Google Scholar 

  17. Lin H. Nat Rev Genet 2002;3(12):931–940.

    Article  PubMed  CAS  Google Scholar 

  18. Xie T, Spradling A. In Stem cell biology. In: Marshak DR, Gardner RL, Gottlieb D. (ed), Cold Spring Habor Lab. Press, Cold Spring Habor, NY: 2001; pp. 129–148.

    Google Scholar 

  19. Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M. J Ultrastruct Res 1979;69(2):180–190.

    Article  PubMed  CAS  Google Scholar 

  20. Lindsley DT, Tokuyasu KT. In Genetics and Biology of Drosophila. In: Ashburner M, (ed), Academic Press, New York: 1980; pp. 225–294.

    Google Scholar 

  21. Yamashita YM, Jones DL, Fuller MT. Science 2003;301(5639):1547–1550.

    Article  PubMed  CAS  Google Scholar 

  22. Guo S, Kemphues KJ. Cell 1995;81(4):611–620.

    Article  PubMed  CAS  Google Scholar 

  23. Jan YN, Jan LY. Nat Rev Neurosci 2001;2(11):772–779.

    Article  PubMed  CAS  Google Scholar 

  24. Rose LS, Kemphues KJ. Annu Rev Genet 1998;32:521–545.

    Article  PubMed  CAS  Google Scholar 

  25. Li P, Yang X, Wasser M, Cai Y, Chia W. Cell 1997;90(3):437–447.

    Article  PubMed  CAS  Google Scholar 

  26. Knoblich JA. Nat Rev Mol Cell Biol 2001;2(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  27. Kaltschmidt JA, Brand AH. J Cell Sci 2002;115(Pt 11):2257–2264.

    PubMed  CAS  Google Scholar 

  28. Chenn A, McConnell SK. Cell 1995;82(4):631–641.

    Article  PubMed  CAS  Google Scholar 

  29. Cayouette M, Raff M. Nat Neurosci 2002;5(12):1265–1269.

    Article  PubMed  CAS  Google Scholar 

  30. Lechler T, Fuchs E. Nature 2005;437(7056):275–280.

    Article  PubMed  CAS  Google Scholar 

  31. Doetsch F. Curr Opin Genet Dev 2003;13(5):543–550.

    Article  PubMed  CAS  Google Scholar 

  32. Bjerknes M, Cheng H. Gastroenterology 1999;116(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  33. Potten CS, Booth C, Pritchard DM. Int J Exp Pathol 1997;78(4):219–243.

    Article  PubMed  CAS  Google Scholar 

  34. Meineke FA, Potten CS, Loeffler M. Cell Prolif 2001;34(4):253–266.

    Article  PubMed  CAS  Google Scholar 

  35. Galle J, Loeffler M, Drasdo D. Biophys J 2005;88(1):62–75.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang J, Niu C, Ye L, et al. Nature 2003;425(6960):836–841.

    Article  PubMed  CAS  Google Scholar 

  37. Wineman J, Moore K, Lemischka I, Muller-Sieburg C. Blood 1996;87(10):4082–4090.

    PubMed  CAS  Google Scholar 

  38. Moore KA, Ema H, Lemischka IR. Blood 1997;89(12):4337–4347.

    PubMed  CAS  Google Scholar 

  39. Suda T, Suda J, Ogawa M. Proc Natl Acad Sci USA 1984;81(8):2520–2524.

    Article  PubMed  CAS  Google Scholar 

  40. Takano H, Ema H, Sudo K, Nakauchi H. J Exp Med 2004;199(3):295–302.

    Article  PubMed  CAS  Google Scholar 

  41. Punzel M, Liu D, Zhang T, Eckstein V, Miesala K, Ho AD. Exp Hematol 2003;31(4):339–347.

    Article  PubMed  Google Scholar 

  42. Schroeder T. Ann NY Acad Sci 2005;1044:201–209.

    Article  PubMed  Google Scholar 

  43. Roeder I, Loeffler M. Exp Hematol 2002;30(8):853–861.

    Article  PubMed  CAS  Google Scholar 

  44. Roeder I, Loeffler M, Quesenberry PJ, Colvin GA, Lambert JF. Blood 2003;102(3):1143–1144; author reply 1144–1145.

    Article  PubMed  CAS  Google Scholar 

  45. Roeder I, Kamminga LM, Braesel K, Dontje B, Haan Gd, Loeffler M. Blood 2005;105(2):609–616.

    Article  PubMed  CAS  Google Scholar 

  46. Blau HM, Blakely BT. Semin Cell Dev Biol 1999;10(3):267–272.

    Article  PubMed  CAS  Google Scholar 

  47. Goodell MA, Jackson KA, Majka SM, et al. Ann NY Acad Sci 2001;938:208–218.

    Article  PubMed  CAS  Google Scholar 

  48. Graf T. Blood 2002;99(9):3089–3101.

    Article  PubMed  CAS  Google Scholar 

  49. Theise ND. Haematologica 2003;88(4):361–362.

    PubMed  Google Scholar 

  50. Theise ND, Krause DS. Semin Cell Dev Biol 2002;13(6):411–417.

    Article  PubMed  Google Scholar 

  51. Sato T, Laver JH, Ogawa M. Blood 1999;94(8):2548–2554.

    PubMed  CAS  Google Scholar 

  52. Bradford GB, Williams B, Rossi R, Bertoncello I. Exp Hematol 1997;25(5):445–453.

    PubMed  CAS  Google Scholar 

  53. Cheshier SH, Morrison SJ, Liao X, Weissman IL. Proc Natl Acad Sci USA 1999;96(6):3120–3125.

    Article  PubMed  CAS  Google Scholar 

  54. Habibian HK, Peters SO, Hsieh CC, et al. J Exp Med 1998;188(2):393–398.

    Article  PubMed  CAS  Google Scholar 

  55. Frimberger AE, McAuliffe CI, Werme KA, et al. Br J Haematol 2001;112(3):644–654.

    Article  PubMed  CAS  Google Scholar 

  56. Quesenberry P, Habibian H, Dooner M, et al. Blood Cell Mol Dis 2001;27(5):934–937.

    Article  CAS  Google Scholar 

  57. Potten CS. Prog Clin Biol Res 1991;369:155–171.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Roeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, I., Lorenz, R. Asymmetry of stem cell fate and the potential impact of the niche. Stem Cell Rev 2, 171–180 (2006). https://doi.org/10.1007/s12015-006-0045-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0045-4

Index Entries

Navigation