Skip to main content
Log in

Model of Active Transport of Ions in Archaea Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo, I.E., 2001. Fundamentals of Microbiology, 6th edn. Benjamin Cumming, Menlo Park.

    Google Scholar 

  • Bakker, E.P., Rottenberg, H., Caplan, S.R., 1976. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium. Biochim. Biophys. Acta 440, 557–572.

    Article  Google Scholar 

  • Bara, M., Guiet-Bara, A., Durlach, J., 1993. Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes. Res. 6, 167–177.

    Google Scholar 

  • Bogomolni, R.A., 1977. Light energy conservation processes in Halobacterium halobium cells. Fed. Proc. Fed. Am. Soc. Exp. Biol. 36, 1833–1839.

    Google Scholar 

  • Borrelly, G., Boyer, J.C., Touraine, B., 2001. The yeast mutant vps5 affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity. Proc. Natl. Acad. Sci. U.S.A. 98, 9660–9665.

    Article  Google Scholar 

  • Detkova, E.N., Pusheva, M.A., 2006. Energy metabolism in halophilic and alkaliphilic acetogenic bacteria. Microbiology 75(1), 5–17.

    Article  Google Scholar 

  • Goldman, D.E., 1943. Potential, impedance, and rectification in membrane. J. Gen. Physiol. 27, 37–60.

    Article  Google Scholar 

  • Hodgkin, A.L., Katz, B., 1949. The effect on sodium ions in electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77.

    Google Scholar 

  • Kjelstrup, S., Rubi, J.M., Bedeaux, D., 2005. Active transport: a kinetic description based on thermodynamic grounds. J. Theor. Biol. 234, 7–12.

    Article  MathSciNet  Google Scholar 

  • Lanyi, J.K., 1978. Light energy conversion in Halobacterium halobium. Microbiol. Rev. 42(4), 682–706.

    Google Scholar 

  • Lengeler, J., Drews, G., Schlegel, H., 1999. Biology of the Prokatyotes, Blackwell, Oxford.

    Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2005. Models of active transport of ions in biomembranes of various types of cells. J. Theor. Biol. 234(3), 403–412.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2006a. Requirements on models and models of active transport of ions in biomembranes. Bull. Math. Biol. 68(2), 385–399.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2006b. Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions. J. Theor. Biol. 242(3), 617–626.

    Article  MathSciNet  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2007. Models of active transport of neurotransmitters in synaptic vesicles. J. Theor. Biol. 248(2), 350–353.

    Article  Google Scholar 

  • Michel, H., Oesterhelt, D., 1976. Light-induced changes of the gradient and the membrane potential in H. halobium. FEBS. Lett. 65, 175–178.

    Article  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbronga, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, R.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenbarger, T.A., Peck, R.F., Pochlschroder, M., Spudich, J.L., Jung, K.-H., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., DasSarma, S., 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12176–12181.

    Article  Google Scholar 

  • Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334–348.

    Google Scholar 

  • Schafer, G., Engelhard, M., Muller, V., 1999. Bioenergetics of the archaea. Microbiol. Mol. Biol. Rev. 63(3), 570–620.

    Google Scholar 

  • Smirnov, A.V., Suzina, N.E., Kulakovskaya, T.V., Kulaev, I.S., 2002. Magnesium orthophosphate, a new form of reserve phosphate in the halophilic archaeon Halobacterium salinarium. Microbiology 71(6), 786–793.

    Article  Google Scholar 

  • Tortora, G.J., Funke, B.R., Case, C.L., 2003. Microbiology: An Introduction, 8th edn. Benjamin–Cummings, Redwood City, 827 p.

    Google Scholar 

  • Wagner, C.A., Finberg, K.E., Breton, S., Marshansky, V., Brown, D., Geibel, J., 2004. Renal vacuolar H+-ATPase. Physiol. Rev. 84, 1263–1314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melkikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkikh, A.V., Seleznev, V.D. Model of Active Transport of Ions in Archaea Cells. Bull. Math. Biol. 71, 383–398 (2009). https://doi.org/10.1007/s11538-008-9366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9366-6

Keywords

Navigation