Skip to main content

Advertisement

Log in

Lattice Models for Invasions through Patchy Environments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze traveling front solutions for a class of reaction-transport Lattice Models (LMs) in order to claim their interest on the description of biological invasions. As lattice models are spatially discrete models, we address here the problem of invasions trough patchy habitats, where every node in the lattice represents a different patch. Distributed generation times for the individuals are considered, so that different temporal patterns can be studied. Specifically, we explore some examples of seasonal and nonseasonal patterns which may be of ecological interest. The main advantage of the LMs described here is that a direct correspondence between these discrete models and a mesoscopic description of Continuous-Time Random Walks (CTRW) can be found. This point is of great importance, since many times one needs analytical expressions to support or validate numerical results, or vice versa. Finally, that correspondence allows us to provide a discussion about some general aspects of reaction-dispersal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andow, D.A., Kareiva, P.M., Levin, S.A., Okubo, A., 1990. Spread of invading organisms. Landsc. Ecol. 4, 177–88.

    Article  Google Scholar 

  • Andrén, H., 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–66.

    Article  Google Scholar 

  • Arim, M., et al., 2006. Spread dynamics of invasive species. Proc. Nat. Acad. Sci. USA 103, 374–78.

    Article  Google Scholar 

  • Baeumer, B., Kovacs, M., Meerschaert, M.M., 2007. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69, 2281–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Brunet, E., Derrida, X., 1997. Shift in the velocity of a front due to a cutoff. Phys. Rev. E 56, 2597–604.

    Article  MathSciNet  Google Scholar 

  • Campos, D., Fort, J., Méndez, V., 2006. Transport on fractal river networks: Application to migration fronts. Theor. Popul. Biol. 69, 88–3.

    Article  MATH  Google Scholar 

  • Campos, D., Méndez, V., 2008. A Lattice-model representation of continuous-time random walks. J. Phys. A 41, 085101.

    Article  MathSciNet  Google Scholar 

  • Chopard, B., Droz, M., 1998. Cellular Automata Modeling of Physical Systems. Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  • Durrett, R., Levin, S., 1994a. Stochastic spatial models: A users guide to ecological applications. Philos. Trans. R. Soc. B 343, 329–50.

    Article  Google Scholar 

  • Durrett, R., Levin, S., 1994b. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–94.

    Article  MATH  Google Scholar 

  • Fagan, W.F., et al., 2005. When can herbivores slow or reverse the spread of an invading plant? A test case from mount St. Helens. Am. Nat. 166, 669–85.

    Article  Google Scholar 

  • Fedotov, S., 2001. Front propagation into an unstable state of reaction-transport systems. Phys. Rev. Lett. 86, 926–29.

    Article  MathSciNet  Google Scholar 

  • Fedotov, S., Méndez, V., 2002. Continuous-time random walks and traveling fronts. Phys. Rev. E 66, 030102.

    Article  Google Scholar 

  • Flather, C.H., Bevers, M., 2002. Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am. Nat. 159, 40–6.

    Article  Google Scholar 

  • Fisher, R.A., 1937. The wave of advance of advantageous genes. Ann. Eugenics 7, 353–69.

    Google Scholar 

  • Fort, J., Méndez, V., 1999. Time-delayed theory of the neolithic transition in Europe. Phys. Rev. Lett 82, 867–70.

    Article  Google Scholar 

  • Friedlin, M., 1996. Markov Processes and Differential Equations: Asymptotic Problems. Birkhäuser, Basel.

    Google Scholar 

  • Grigulis, K., Sheppard, A.W., Ash, J.E., Groves, R.H., 2001. The comparative demography of the pasture weed Echium plantagineum between its native and invaded ranges. J. Appl. Ecol. 38, 281–90.

    Article  Google Scholar 

  • Grosholz, E.D., 1996. Contrasting rates of spread for introduced species in terrestrial and Marine systems. Ecology 77, 1680–686.

    Article  Google Scholar 

  • Hassell, M.P., Miramontes, O., Rohani, P., May, R.M., 1995. Appropriate formulations for dispersal in spatially structured models: comments on bascompte & sole. J. Anim. Ecol. 64, 662–64.

    Article  Google Scholar 

  • Haus, I.W., Kehr, R.W., 1987. Diffusion in regular and disordered lattices. Phys. Rep. 150, 263–06.

    Article  Google Scholar 

  • Jiang, M., Zhang, Q., 2008. A coupled map lattice model of tree dispersion. Discrete Contin. Dyn. B 9, 83–01.

    MATH  MathSciNet  Google Scholar 

  • Johnson, D.M., et al., 2006. Allee effects and pulsed invasion by the gypsy moth. Nature 444, 361–63.

    Article  Google Scholar 

  • Kawasaki, K., Takasu, F., Caswell, H., 2006. How does stochasticity in colonization accelerate the speed of invasion in a cellular automaton model? Ecol. Res 21, 334–45.

    Article  Google Scholar 

  • Kendall, B.E., Fox, G.A., 1998. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistic map. Theor. Popul. Biol. 54, 11–7.

    Article  MATH  Google Scholar 

  • Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N., 2003. Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64, 291–02.

    Article  MATH  Google Scholar 

  • Kolmogorov, A., Petrovskii, I., Piskunov, N., 1937. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Mosc. Univ. Bull. Math. 1, 1–5.

    Google Scholar 

  • Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–042.

    Article  Google Scholar 

  • Lloyd, A.L., 1995. The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173, 217–30.

    Article  Google Scholar 

  • Malevanets, A., Kapral, R., 1997. Microscopic model for FitzHugh-Nagumo dynamics. Phys. Rev. E 55, 5657–670.

    Article  Google Scholar 

  • Méndez, V., Campos, D., Fedotov, S., 2004a. Front propagation in reaction-dispersal models with finite jump speed. Phys. Rev. E 70, 036121.

    Article  MathSciNet  Google Scholar 

  • Méndez, V., Campos, D., Fedotov, S., 2004b. Analysis of fronts in reaction-dispersal processes. Phys. Rev. E 70, 066129.

    Article  Google Scholar 

  • Méndez, V., Fort, J., Campos, D., 2004c. Speed of travelling fronts: Two-dimensional and ballistic dispersal probability distributions. Europhys. Lett 66, 902–08.

    Article  Google Scholar 

  • Montroll, E.W., Weiss, G.H., 1965. Random walks on lattices, II. J. Math. Phys 6, 167–81.

    Article  MathSciNet  Google Scholar 

  • Murray, J.D., 2003. Mathematical Biology, 3rd edn. Springer, Berlin.

    MATH  Google Scholar 

  • Neubert, M.G., Caswell, H., 2000. Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81, 1613–628.

    Article  Google Scholar 

  • Ortega-Cejas, V., Fort, J., Méndez, V., 2004. The role of the delay time in the modeling of biological range expansions. Ecology 85, 258–64.

    Article  Google Scholar 

  • Othmer, H.G., Dunbar, S.R., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Piggin, C.M., Sheppard, A.W., 1995. Echium plantagineum L. In: Groves, R.H., Shepherd, R.C.H., Richardson, R.G. (Eds.), The Biology of Australian Weeds, vol. 1. Richardson, Melbourne

    Google Scholar 

  • Pysek, P., Hulme, P.E., 2005. Spatio-temporal dynamics of plant invasions: linking pattern to process. Ecoscience 12, 302–15.

    Article  Google Scholar 

  • Sokolov, I.M., Schmidt, M.G.W., Sagués, F., 2006. Reaction-subdiffusion equations. Phys. Rev. E 73, 031102.

    Article  Google Scholar 

  • Solé, R.V., Valls, J., 1993. On structural stability and chaos in biological systems. J. Theor. Biol. 155, 87–02.

    Article  Google Scholar 

  • Tilman, D., Kareiva, P., 1997. Spatial Ecology. The Role of Space in Population Dynamics and Interspecific Interactions. Princeton Univ. Press, Princeton.

    Google Scholar 

  • van Saarloos, W., 2003. Front propagation into unstable states. Phys. Rep. 386, 29–22.

    Article  MATH  Google Scholar 

  • White, S.M., White, K.A.J., 2005. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. J. Theor. Biol. 235, 463–75.

    Article  Google Scholar 

  • Williamson, M., Pysek, P., Jarosik, V., Prach, K., 2005. On the rates and patterns of spread of alien plants in the Czech Republic, Britain and Ireland. Ecoscience 12, 424–33.

    Article  Google Scholar 

  • Yadav, A., Horsthemke, W., 2006. Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis. Phys. Rev. E 74, 066118.

    Article  MathSciNet  Google Scholar 

  • Zanette, D.H., 1992. Multistate cellular automaton for reaction-diffusion processes. Phys. Rev. A 46, 7573–579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenç Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, D., Méndez, V. & Ortega-Cejas, V. Lattice Models for Invasions through Patchy Environments. Bull. Math. Biol. 70, 1937–1956 (2008). https://doi.org/10.1007/s11538-008-9333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9333-2

Keywords

Navigation