Skip to main content
Log in

Morphogenetic Gradients and the Stability of Boundaries Between Neighboring Morphogenetic Regions

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Generating morphogenetic gradients during early development is a fundamental step of positional signaling, which ultimately results in patterning and cell specialization. Based on morphogens propagation from cells to cells, we have presented a biophysical model in Holcman et al. (in press), where gradients and boundaries between different morphogenetic regions can be generated. In that theory, morphogens are transcription factors which induce their own activation and at the same time propagate in a cell ensemble.

We analyze here a variant version of the biophysical model proposed in Holcman et al. (in press), where now morphogens can form dimers. As a result, gradients are smoother and borders are much sharper. Because random perturbations of a gradient can affect the precise location of the boundary between two morphogenetic regions, we also analyze these fluctuations and in particular, we obtain an analytic expression for the variance of the boundary location as a function of the variance of the random perturbations. This formula can be used to study the noise intrinsic effect on the boundary position between morphogenetic regions, which can be at the origin of interindividual variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, K.M., Garel, S., Nakagawa, Y., Rubenstein, J.L., O’Leary, D.D., 2003. Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457(4), 345–360.

    Article  Google Scholar 

  • Brodski, C., Weisenhorn, D.M., Signore, M., Sillaber, I., Oesterheld, M., Broccoli, V., Acampora, D., Simeone, A., Wurst, W., 2003. Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J. Neurosci. 23(10), 4199–4207.

    Google Scholar 

  • Brunet, I., Weinl, C., Piper, M., Trembleau, A., Volovitch, M., Harris, W., Prochiantz, A., Holt, C., 2005. The transcription factor Engrailed-2 guides retinal axons. Nature 438(7064), 94–98.

    Article  Google Scholar 

  • Crick, F., 1970. Diffusion in embryogenesis. Nature 225(5231), 420–422.

    Article  Google Scholar 

  • Eldar, A., Barkai, N., 2005. Interpreting clone-mediated perturbations of morphogen profiles. Dev. Biol. 278(1), 203–207. Review.

    Article  Google Scholar 

  • Entchev, E.V., Gonzalez-Gaitan, M.A., 2002. Morphogen gradient formation and vesicular trafficking. Traffic 3(2), 98–109. Review.

    Article  Google Scholar 

  • Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Holcman, D., Kasatkin, V., Prochiantz, A., in press. Modeling homeoprotein intercellular transfer unveils a parsimonious mechanism for gradient and boundary formation in early brain development. J. Therm. Biol.

  • Houchmandzadeh, B., Wieschaus, E., Leibler, S., 2002. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415(6873), 798–802.

    Google Scholar 

  • Houchmandzadeh, B., Wieschaus, E., Leibler, S., 2005. Precise domain specification in the developing Drosophila embryo. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 72, 061920.

    Google Scholar 

  • Howard, M., ten Wolde, P.R., 2005. Finding the center reliably: robust patterns of developmental gene expression. Phys. Rev. Lett. 95(20), 208103.

    Article  Google Scholar 

  • Kerszberg, M., Wolpert, L., 1998. Mechanisms for positional signalling by morphogen transport: a theoretical study. J. Theor. Biol. 191(1), 103–114.

    Article  Google Scholar 

  • Lander, A.D., Nie, Q., Wan, F.Y., 2002. Do morphogen gradients arise by diffusion? Dev. Cell 2(6), 785–796.

    Article  Google Scholar 

  • McHale, P., Rappel, W.J., Levine, H., 2006. Embryonic pattern scaling achieved by oppositely directed morphogen gradients. Phys. Biol. 3(2), 107–120.

    Article  Google Scholar 

  • Meinhardt, H., 1983. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375–385.

    Article  Google Scholar 

  • Monk, N.A., 1998. Restricted-range gradients and travelling fronts in a model of juxtacrine cell relay. Bull. Math. Biol. 60(5), 901–918.

    Article  MATH  Google Scholar 

  • Prochiantz, A., Joliot, A., 2003. Can transcription factors function as cell–cell signalling molecules? Nat. Rev. Mol. Cell Biol. 4(10), 814–819.

    Google Scholar 

  • Schwarz, M., Cecconi, F., Bernier, G., Andrejewski, N., Kammandel, B., Wagner, M., Gruss, P., 2000. Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127(20), 4325–4334.

    Google Scholar 

  • Simeone, A., 2000. Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet. 16, 237–240.

    Article  Google Scholar 

  • Stenman, J., Yu, R.T., Evans, R.M., Campbell, K., 2003. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development 130(6), 1113–1122.

    Article  Google Scholar 

  • Toresson, H., Potter, S.S., Campbell, K., 2000. Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127(20), 4361–4371.

    Google Scholar 

  • Turing, A., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72.

    Article  Google Scholar 

  • Vincent, J.P., Dubois, L., 2002. Morphogen transport along epithelia, an integrated trafficking problem. Dev. Cell 3(5), 615–623.

    Article  Google Scholar 

  • Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47.

    Article  Google Scholar 

  • Wolpert, L., 1996. One hundred years of positional information. Trends Genet. 12(9), 359–364. Review.

    Article  Google Scholar 

  • Yun, K., Potter, S., Rubenstein, J.L., 2001. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128(2), 193–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Holcman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasatkin, V., Prochiantz, A. & Holcman, D. Morphogenetic Gradients and the Stability of Boundaries Between Neighboring Morphogenetic Regions. Bull. Math. Biol. 70, 156–178 (2008). https://doi.org/10.1007/s11538-007-9246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9246-5

Keywords

Navigation