Skip to main content

Advertisement

Log in

Gene Expression Time Delays and Turing Pattern Formation Systems

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The incorporation of time delays can greatly affect the behaviour of partial differential equations and dynamical systems. In addition, there is evidence that time delays in gene expression due to transcription and translation play an important role in the dynamics of cellular systems. In this paper, we investigate the effects of incorporating gene expression time delays into a one-dimensional putative reaction diffusion pattern formation mechanism on both stationary domains and domains with spatially uniform exponential growth. While oscillatory behaviour is rare, we find that the time taken to initiate and stabilise patterns increases dramatically as the time delay is increased. In addition, we observe that on rapidly growing domains the time delay can induce a failure of the Turing instability which cannot be predicted by a naive linear analysis of the underlying equations about the homogeneous steady state. The dramatic lag in the induction of patterning, or even its complete absence on occasions, highlights the importance of considering explicit gene expression time delays in models for cellular reaction diffusion patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcuri, P., Murray, J.D., 1986. Pattern sensitivity to boundary and initial conditions in reaction diffusion models. J. Math. Biol. 24, 141–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Bard, J., Lauder, I., 1974. How well does Turing's theory of morphogenesis work? J. Theor. Biol. 45, 501–531.

    Article  Google Scholar 

  • Boushaba, K., Ruan, S., 2001. Instability in diffusive ecological models with non-local delay effects. J. Math. Anal. Appl. 258, 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  • Branford, W.W., Yost, H.J., 2002. Lefty-dependent antagonism of the Nodal and Wnt signalling pathways is essential for normal gastrulation. Curr. Biol. 12, 2136–2141.

    Article  Google Scholar 

  • Branford, W.W., Yost, H.J., 2004. Nodal signalling: Cryptic lefty mechanism of antagonism decoded. Curr.nt Biol. 14, R341–R343.

    Article  Google Scholar 

  • Bunow, B., Kernevez, J.P., Joly Thomas, G., 1980. Pattern formation by reaction-diffusion instabilities: Applications to morphogenesis in Drosophila. J. Theor. Biol. 84, 629–649.

    Article  Google Scholar 

  • Chen, C., Shen, M.M., 2004. Two modes by which lefty proteins inhibit nodal signalling. Curr. Biol. 14, 618–624.

    Article  Google Scholar 

  • Chen, Y., Schier, A.F., 2001. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607–610.

    Article  Google Scholar 

  • Chen, Y., Schier, A.F., 2002. Lefty proteins are long-range inhibitors of Squint-mediated Nodal signalling. Curr. Biol. 12, 2124–2128.

    Article  Google Scholar 

  • Crampin, E.J., Gaffney, E.A., Maini, P.K., 1999. Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093–1120.

    Article  Google Scholar 

  • Crampin, E.J., Gaffney, E.A., Maini, P.K., 2002. Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model. J. Math. Biol. 44, 107–128.

    Article  MATH  MathSciNet  Google Scholar 

  • Glimm, T., Glazier, J.A., Newman, S.A., 2004. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb, HGE Hentschel. Proc. R. Soc. Lond. B 271, 1713-1722.

    Article  Google Scholar 

  • Goodwin, B.C., Murray, J.D., Baldwin, D., 1985. Calcium: The elusive morphogen in Acetabularia. In: Bonnotto, S., Cinelli, F., Billiau, R. (Ed.), Proceedings 6th International Symposium on Acetabularia, Pisa, Belgium, 1984. Belgian Nuclear Centre, CEN-SEK Mol, Belgium, pp. 101–108.

  • Gourley, S.A., Ruan, S., 2002. Spatio-temporal delays in a nutrient-plankton model on a finite domain: Linear stability and bifurcations. Appl. Math. Comput. 145, 391–412.

    Article  MathSciNet  Google Scholar 

  • Jung, H.S., Francis-West, P.H., Widelitz, R.B., Jiang, T., Ting-Berreth, S., Tickle, C., Wolpert, L., Chuong, C., 1998. Local inhibitory action of BMPs and their relationships with activators in feather formation: Implications for periodic patterning. Dev. Biol. 196, 11–23.

    Article  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. See also http://www.zfin.org/zf_info/zfbook/stages.

    Google Scholar 

  • Kondo, S., Asai, R., 1995. A reaction-diffusion wave on the skin of Pomacanthus, the marine Angelfish. Nature 376, 765–768.

    Article  Google Scholar 

  • Lewis, J., 2003. Autoinhibition with transcriptional delay: A simple mechanism for the Zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408.

    Article  Google Scholar 

  • Li, Q.S., Ji, L., 2004. Control of Turing pattern formation by delayed feedback. Phys. Rev. E 69, 046205-1–046205-4.

    Google Scholar 

  • Mahaffy, J.M., 1988. Genetic control models with diffusion and delays. Math. Biosci. 90, 519–533.

    Article  MathSciNet  Google Scholar 

  • Mahaffy, J.M., Pao, C.V., 1984. Models of genetic control by repression with time delays and spatial effects. J. Math. Biol. 20, 39–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Meinhardt, H., 1982. Models of Biological Pattern Formations. Academic Press, New York.

    Google Scholar 

  • Miura, T., Maini, P.K., 2004. Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649.

    Article  MathSciNet  Google Scholar 

  • Miura, T., Shiota, K., 2000. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: Experimental verification of theoretical models. Anat. Rec. 258, 100–107.

    Article  Google Scholar 

  • Monk, N.A.M., 2003. Oscillatory expression of Hes1, p53, and NF-kappa B driven by transcriptional time delays. Curr. Biol. 13, 1409–1413.

    Article  Google Scholar 

  • Murray, J.D., 1981. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Murray, J.D., Oster, G.F., Harris, A.K., 1983. A mechanical model for mesenchymal morphogenesis. J. Math. Biol. 17, 125–129.

    Article  MATH  Google Scholar 

  • Oster, G.F., Murray, J.D., Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78, 83–125.

    Google Scholar 

  • Ouyang, Q., Swinney, H.L., 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612.

    Article  Google Scholar 

  • Page, K.M., Maini, P.K., Monk, N.A.M., 2005. Complex pattern formation in reaction diffusion systems with spatially-varying parameters. Physica D 202, 95–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Ruan, S., 1998. Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J. Appl. Math. 61, 15–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Solnica-Krezel, L., 2003. Vertebrate development: Taming the nodal waves. Curr. Biol. 13, R7–R9.

    Article  Google Scholar 

  • Tabata, T., Takei, Y., 2004. Morphogens, their identification and regulation. Development 131, 703–712.

    Article  Google Scholar 

  • Tennyson, C.N., Klamut, H.J., Worton, R.G., 1995. The human dystrophin gene requires 16 h to be transcribed and is cotranscriptionally spliced. Nat. Gen. 9, 184–190.

    Article  Google Scholar 

  • Turing, A., 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B237, 37–72.

    Google Scholar 

  • Veflingstad, S.R., Plahte, E., Monk, N.A.M., 2005. Effect of time delay on pattern formation: Competition between homogenisation and patterning. Physica D 207, 254–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Vincent, J.P., Briscoe, J., 2001. Morphogens. Curr. Biol. 11, R851–R854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Gaffney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaffney, E.A., Monk, N.A.M. Gene Expression Time Delays and Turing Pattern Formation Systems. Bltn. Mathcal. Biology 68, 99–130 (2006). https://doi.org/10.1007/s11538-006-9066-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9066-z

Keywords

Navigation