Skip to main content
Log in

Requirements on Models and Models of Active Transport of Ions in Biomembranes

  • Original Paper
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Requirements on models of the active transport of ions in biomembranes have been formulated. The basic requirements include an explicit dependence of the resting potential and intracellular concentrations of ions on the difference of ATP-ADP chemical potentials, a consideration of the reversibility of the ionic pump operation, a correlation between theoretical and experimental data on the resting potential and intracellular concentrations of ions for different types of cells, the pump efficiency approaching 100%, and a tendency of the resting potential to the Donnan potential if the active transport is blocked. A model satisfying the aforementioned requirements has been proposed by the authors as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bustamante, S., Keller, D., Oster, G., 2001. The physics of molecular motors. Acc. Chem. Res. 34, 412–420.

    Article  PubMed  Google Scholar 

  • Caplan, S.R., Essig, A., 1983. Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • De Groot, S.R., Mazur, P., 1962. Non-Equilibrium Thermodynamics, North-Holland, Amsterdam.

    Google Scholar 

  • De Weer, P., Gadsby, D.C., Rakowski, R.F., 2001. Voltage dependence of the apparent affinity for external Na+ of the backward-running sodium pump. J. Gen. Physiol. 117, 315–328.

    Article  PubMed  Google Scholar 

  • Faber, G.M., Rudy, Y., 2000. Action potential and contractility changes in [Na+] i overloaded cardiac myocytes: A simulation study, Biophys. J. 78, 2392–2404.

    Article  Google Scholar 

  • Fahraeus, C., Theander, S., Edman, A., Grampp, W., 2002. The K-Cl cotransporter in the lobster stretch receptor neuron—A kinetic analysis, J. Theor. Biol. 217, 287–309. doi:10.1006/yjtbi. 3038.

    Google Scholar 

  • Goldman, D.E., 1943. Potential, impedance, and rectification in membrane. J. Gen. Physiol. 27, 37–60.

    Article  Google Scholar 

  • Hodgkin, A.L., Katz, B., 1949. The effect on sodium ions in electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77.

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P., 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. 148, 127–160.

    PubMed  Google Scholar 

  • Hopfer, U.A., 2002. Maxwell's Demon type of membrane transport: Possibility for active transport by ABC-transporters. J. Theor. Biol. 214, 539–547. doi:10.1006/jtbi.2001.2479.

    Google Scholar 

  • Kjelstrup, S., Rubi, J.M., Bedeaux, D., 2005. Active transport: A kinetic description based on thermodynamic grounds. J. Theor. Biol. 234(1), 7–12.

    Article  PubMed  MathSciNet  Google Scholar 

  • Kabakov, A.Y., 1994. The resting potential equations incorporating ionic pumps and osmotic concentrations. J. Theor. Biol. 169, 51–64.

    Article  PubMed  Google Scholar 

  • Kabakov, A.Y., 1998. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches. Biophys. J. 75, 2858–2867.

    PubMed  Google Scholar 

  • Kedem, O., Katchalsky, A., 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Bioch. Biophys. Acta 27, 229–246.

    Article  Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 1998. Nonequilibrium statistical model of an efficient molecular machine performing active ion transport across biological membranes. Biophysics (Biofizika) 43(3), 449–453.

    Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 1999. Mechanism of the generation of electric potential difference across the cell membrane. Biophysics (Biofizika) 44(3) 467–471.

    Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2001. Model of the electric potential across the cell membrane during the transfer of several ions by the active transport system. Biophysics (Biofizika) 46(2), 271–275.

    Google Scholar 

  • Melkikh, A.V., Seleznev, V.D., 2005. Models of active transport in biomembranes of various types of cells. J. Theor. Biol. 324(3), 403–412

    Google Scholar 

  • Oster, G., Wang, H., 2003. Rotary protein motors. Trends Cell Biol. 13(3), 114–121.

    Article  PubMed  Google Scholar 

  • Oster, G., Wang, H., 2000. Why is the efficiency of the F1 ATPase so high? J. Bioeneerg. Biomembr. 32, 459–469.

    Article  Google Scholar 

  • Sagar, A., Rakowski, R.F., 1994. Access channel model for the voltage dependence of the forward-running Na+/K+ pump. J. Gen. Physiol. 103, 869–894.

    Article  PubMed  Google Scholar 

  • Sperelakis, N., 2001. Origin of resting membrane potential. In: Sperelakis, N. (Ed.), Cell Physiology Sourcebook, 3rd ed. Academic Press, San Diego, pp. 219–236.

  • Tsong, T.Y., Chang, C.H., 2003. Ion pump as brownian motor: Theory of electroconformational coupling and proof of ratchet mechanism for Na-K-ATPase action. Physica A 321(1–2), 124–138.

    Google Scholar 

  • Volkenstein, M.V., 1972. The conformon. J. Theor. Biol. 34, 193–195.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melkikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkikh, A.V., Seleznev, V.D. Requirements on Models and Models of Active Transport of Ions in Biomembranes. Bull. Math. Biol. 68, 385–399 (2006). https://doi.org/10.1007/s11538-005-9035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9035-y

Keywords

Navigation