Skip to main content

Advertisement

Log in

Healthy and tumoral tissue resistivity in wild-type and sparc–/– animal models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Despite the technological improvement of radiologic, endoscopic and nuclear imaging, the accuracy of diagnostic procedures for tumors can be limited whenever a mass-forming lesion is identified. This is true also because bioptical sampling cannot be properly guided into the lesions so as to puncture neoplastic tissue and to avoid necrotic areas. Under these circumstances, invasive and expensive procedures are still required to obtain diagnosis which is mandatory to plan the most appropriate therapeutic strategy. In order to test if electrical impedance spectroscopy may be helpful in providing further evidence for cancer detection, resistivity measurements were taken on 22 mice, 11 wild‐type and 11 sparc/– (knock out for the protein SPARC: secreted protein acidic and rich in cysteine), bearing mammary carcinomas, by placing a needle-probe into tumor, peritumoral and contralateral healthy fat areas. Tumor resistivity was significantly lower than both peritumoral fat and contralateral fat tissues. Resistivity in sparc/– mice was lower than wild-type animals. A significant frequency dependence of resistivity was present in tissues analyzed. We conclude that accurate measurements of resistivity may allow to discriminate between tissues with different pathological and/or structural characteristics. Therefore, resistivity measurements could be considered for in vivo detection and differential diagnosis of tumor masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  2. Blad B, Baldetorp B (1996) Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography. Physiol Meas 17:A105–A115

    Article  PubMed  Google Scholar 

  3. Brown BH, Smallwood RH (1999) Medical physics and biomedical engineering. IOP, London

    Book  Google Scholar 

  4. DeVita, Hellman, and Rosenberg’s cancer: Principles and practice of oncology by Vincent T. DeVita Jr. MD (Editor), Theodore S. Lawrence MD Ph.D. (Editor), Steven A. Rosenberg MD Ph.D. (Editor), Ronald A. DePinho MD (Editor), Robert A. Weinberg Ph.D. (Editor). Ninth Edition, Lippincott, Philadelphia 2011

  5. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Article  Google Scholar 

  6. Faupel M, Vanel D, Barth V, Davies R, Fentiman IS, Holland R, Lamarque JL, Sacchini V, Schreer I (1997) Electropotential evaluation as a new technique for diagnosis breast lesions. Eur J Radiol 24:33–38

    Article  CAS  PubMed  Google Scholar 

  7. Fricke H, Morse S (1926) The electrical capacity of tumors of the breast. J Cancer Res 10:340–376

    Google Scholar 

  8. Geddes LA, Baker LE (1967) The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    Article  CAS  PubMed  Google Scholar 

  9. Haemmerich D, Staellin ST, Tsai JZ et al (2003) In vivo electrical conductivity of hepatic tumours. Physiol Meas 24:251–260

    Article  PubMed  Google Scholar 

  10. Halter RJ, Kim Y-J (2014) Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment. IEEE Trans Biomed Eng 61(11):2779–2786

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holder DS (2005) Electrical impedance tomography: methods, history and applications. Department of Medical Physics and Bioengineering, University College London, London

    Google Scholar 

  12. Hope TA, Iles SE (2004) Technology review: the use of electric impedance scanning in the detection of breast cancer. Breast Cancer Res 6:69–74

    Article  PubMed  Google Scholar 

  13. Ivorra A (2003) Bioimpedance monitoring for physicians: an overview. Centre Nacional de Microelectrònica Biomedical Applications Group, pp. 1–35

  14. Ivorra A, Gomez R, Noguera N, Villa R, Sola A, Palacios L, Hotter G, Aguilo J (2009) Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens Bioelectron 391:391–399

    Google Scholar 

  15. Karki B, Wi H, McEwan A, Kwon H, Oh IT, Woo EJ, Seo JK (2014) Evaluation of a multi-electrode bioimpedance spectroscopy tensor probe to detect the anisotropic conductivity spectra of biological tissues. Meas Sci Technol 25:1–11

    Article  CAS  Google Scholar 

  16. Keshtkar A, Salehnia Z, Keshtkar A, Shokouhi B (2012) Bladder cancer detection using electrical impedance technique (tabriz mark 1). Pathol Res Int 2012:470101

  17. Kimura S, Morimoto T, Uyama T, Monden Y, Kinouchi Y, Iritani T (1994) Application of electrical impedance analysis for diagnosis of a pulmonary mass. Chest 105:1679–1682

    Article  CAS  PubMed  Google Scholar 

  18. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  19. Lee BR, Roberts WW, Smith DG, Ko HW, Epstein JI, Lecksell K, Partin AW (1999) Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate. The Prostate 39:213–218

    Article  CAS  PubMed  Google Scholar 

  20. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  21. Mauri G, Chiodoni C, Parenza M, Arioli I, Tripodo C, Colombo MP (2013) Ultrasound-guided intra-tumor injection of combined immunotherapy cures mice from orthotopic prostate cancer. Cancer Immunol Immunother 62:1811–1819

    Article  CAS  PubMed  Google Scholar 

  22. Mishra V, Bouayad H, Schned A, Heaney J, Halter RJ (2012) Electrical impedance spectroscopy for prostate cancer diagnosis. In: 34th Annual international conference of the IEEE EMBS, pp 3258–3261

  23. Nie J, Sage EH (2009) SPARC functions as an inhibitor of adipogenesis. J Cell Commun Signal 3:247–254

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pethig R (1984) Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans Electr Insul 19:453–474

    Article  Google Scholar 

  25. Prakash S, Karnes MP, Sequin EK, West JD, Hitchcock CL, Nichols SD, Bloomston M, Abdel-Misih SR, Schmidt CR, Martin EW Jr, Povoski SP, Subramanian VV (2015) Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer. Physiol Meas 36:315–328

    Article  CAS  PubMed  Google Scholar 

  26. Sangaletti S, Stoppacciaro A, Guiducci C, Torrisi MR, Colombo MP (2003) Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med 198:1475–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schellinga MWM, Vanhouette D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen REW, d’Hooge J, de Werf FV, Carmeliet P, Pinto YM, Sage EH, Heymans S (2008) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. JEM 1:113–123

    Google Scholar 

  28. Subbhuraam VS, Ng EY, Kaw G, Acharya UR, Chong BK (2012) Evaluation of the efficiency of biofield diagnostic system in breast cancer detection using clinical study results and classifiers. J Med Syst 36(1):15–24

    Article  PubMed  Google Scholar 

  29. Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

    Article  CAS  PubMed  Google Scholar 

  30. Yan Q, Sage EH (1999) SPARC a matricellular glycoprotein with important biological functions. J Histochem Cytochem 47:1495–1506

    Article  CAS  PubMed  Google Scholar 

  31. Yu D, Jun D, Qing Y, Jianxun Z (2015) Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiol Meas 36:1795–1799

    Article  Google Scholar 

  32. Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25:79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Bioengineering Laboratories S.r.l. and in particular Dr. Francesco Greco for the precious support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aliverti.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meroni, D., Mauri, G., Bovio, D. et al. Healthy and tumoral tissue resistivity in wild-type and sparc–/– animal models. Med Biol Eng Comput 54, 1949–1957 (2016). https://doi.org/10.1007/s11517-016-1489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1489-6

Keywords

Navigation